Le présent exemplaire a été remis le 18 juillet 2016 en 1 exemplaire

à la Société:

SOCIÉTÉ ARMORICAINE D'INCINERATION

LES GUICHARDIERES **ROUTE DE DOMAGNÉ** 35500 CORNILLE

A l'attention de Monsieur Dominique **TOUSSAINT**

Rédacteur : V.LEPAGE

Opérateur(s) : Olivier Laurent Maxime Couton

Intervention: le24/05/2016

Ce document comporte 77 pages dont 6 annexes

Accréditation n°1-2462

Portée disponible sur www.cofrac.fr

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées dans le tableau du paragraphe « objet des essais ». La reproduction de ce document n'est autorisée que sous la forme de fac-similé photographique intégral. Toute reproduction partielle ne peut être effectuée sans l'approbation du laboratoire. Ce rapport ne concerne que les échantillons référencés dans le présent rapport.

Les protocoles d'incertitude sont consultables à IRH Ingénieur Conseil.

Site de Beaucouzé 8 rue Olivier de Serres CS 37289 49072 Beaucouzé CEDEX

Tél: +33 2 41 73 21 11 - Fax: +33 2 41 73 38 58 www.groupeirhenvironnement.com

FICHE SIGNALETIQUE

CLIENT	
Raison sociale	SOCIÉTÉ ARMORICAINE D'INCINERATION
Coordonnées	LES GUICHARDIERES ROUTE DE DOMAGNÉ 35500 CORNILLE
SITE D'INTERVENTION	
Raison sociale	SOCIÉTÉ ARMORICAINE D'INCINERATION
Coordonnées	LES GUICHARDIERES 35500 CORNILLE
DOCUMENT	
Destinataires	Monsieur Dominique TOUSSAINT 02 99 49 63 75 -
Date de remise	18 juillet 2016
Nombre d'exemplaire remis	1
Pièces jointes	-
N° Rapport	DCD16007AZ-16-43-R0
Révision 0	Première version du rapport
Révision 1	

Nom	Fonction	Date	Signature
Olivier Laurent	CHARGE D'ETUDES AIR	18 juillet 2016	
			4

1 Objet des essais	
2 Rapport d'Essais	6
2.1 Rejet incinération	(
2.1.1 Description de l'installation	(
2.1.2 Description de la section de mesure	(
2.1.3 Plan de mesurage	7
2.1.4 Conditions de fonctionnement et mesurages périphériques	8
2.1.5 Résultats des mesures	8
3 Conclusion	12
5 Modalités opératoires et matériels utilisés	13
5.1 Modalités opératoires	13
5.2 Observations, écarts aux normes	14
5.3 Matériels utilisés	14
5.4 Gaz étalon	15
Annexe 1 : Rejet ligne d'incinération	16
Annexe 2 : Expression des résultats	49
Annexe 3 : Plan de mesurage	51
Annexe 4 : Critères de conformité des blancs de prélèvement	52
Annexe 5 : Schémas des dispositifs de prélèvement	53
Annexe 6 : Rapports d'analyses des laboratoires sous-traitants	54

1. - Objet des essais

- Procéder aux contrôles inopinés des rejets atmosphériques de la société SAVE à CORNILLE.
- Texte de référence : Arrêté préfectoral du 18 juillet 2011 et arrêté ministériel du 20 septembre 2002
- Installations concernées et composés recensés mesurés :

Installations Paramètres	Rejet ligne d'ir	ncinération		
Dimensions du conduit	0.8 n	า		
Nombre axes / trappes normalisées	2/2			
Accès	Escalie	ers		
	Nombre détermination	COFRAC		
Débit gazeux	3	Oui		
Humidité des gaz	3	Oui		
O ₂	3	Oui		
SO ₂	3	Oui		
COV totaux	3	Oui		
Poussières	3	Non**		
СО	3	Oui		
HCI	3	Oui		
PCDD/PCDF	1	Oui		
CO ₂	3	Non		
NOx	3	Oui		
HF	1	Oui		
NH3	3	Oui		
Mercure	1	Oui		
Métaux lourds (liste des COFRAC *)	1	Oui		

^{*} Arsenic, Cadmium, Chrome, Cobalt, Cuivre, Manganèse, Nickel, Plomb, Antimoine, Thallium, Vanadium

• <u>Détermination COFRAC</u>

Nombre Détermination	COFRAC		Rejets et paramètres concernés
1	Oui	1 détermination car résultats antérieurs < 20% VLE (justificatif fourni par la société) Ou Mesures de PCDD/F	Rejet ligne d'incinération: HF, Métaux lourds, Hg, PCDD/F
3	Oui	3 déterminations car mesures de gaz par méthodes automatiques ou 3 déterminations car résultats antérieurs > 20% VLE (mesures par méthodes manuelles)	Rejet ligne d'incinération: O2, COV, CO, NOx, SO2, NH3, HCl, débit, humidité

^{**}Voir paragraphe 5.2 : Observations, écarts aux normes (page 9).

• <u>Détermination non COFRAC</u>

Nombre Détermination	COFRAC		Rejets et paramètres concernés
		Paramètre non concerné par les agréments	Rejet ligne d'incinération : CO2
3	Non	voir commentaire paragraphe 5.2 Observations, écarts aux normes pour les poussières	Poussières

AGREMENTS:

IRH Ingénieur Conseil est agréé par le Ministère de l'Ecologie, du Développement Durable et de l'Energie pour effectuer certains types de prélèvements et d'analyses à l'émission des substances dans l'atmosphère jusqu'au 31 décembre 2017 : agréments 1a, 2, 3a, 4a, 5a, 6a, 7, 9a, 10a, 11, 12, 13, 14, 15 et 16a (Arrêté du 28 mai 2015 publié au J.O. du 16 juin 2015).

2. - Rapport d'Essais

2.1. - Rejet incinération

2.1.1. - Description de l'installation

Secteur industriel	Incinérateur de boues et de farines
Description du process (schéma en annexe)	Incinération de boues (75%) et farine (25%)
Capacité nominale	7 tonnes/heure
Procédé continu/cyclique (précisez les phases et durées)	Procédé continu
Traitement des gaz	Electrofiltre, FAM injection Bicarbonate et NH3

2.1.2. - Description de la section de mesure

La Norme NF EN 15 259 relative à la "Qualité de l'air - Mesurage des émissions de sources fixes - Exigences relatives aux sections et aux sites de mesurage et relatives à l'objectif, au plan et au rapport de mesurage" définit les caractéristiques de la section de mesure et du point de prélèvement. Lors de notre intervention, les observations suivantes ont été effectuées sur l'installation contrôlée :

EXIGENCES DE LA NORME NF EN 15 259							
	Description	Conformité					
Dimensions de la section de mesure (mm)	800	-					
Conduit (1)	Vertical	-					
Nombre d'axes de mesure disponible	2 (Ø > 350 mm)	Conforme					
Trappes normalisées / Nombre	Oui / 2	Conforme					
Longueur droite amont	> 5 Dh ⁽²⁾	Conforme					
Longueur droite aval	>5 Dh ⁽²⁾ sans coude	Conforme					
Angle d'écoulement gazeux (par rapport à l'axe du conduit)	< 15°	Conforme					
Ecoulement négatif	Non	Conforme					
Pression différentielle minimale	> 5 Pa	Conforme					
Rapport entre vitesse locale la plus élevée et la plus faible	< 3	Conforme					
Accès sécurisé permettant le levage des appareils de mesure (si nécessaire)	Escabeau	Conforme					
Recul (si 1 trappe : zone travail = diamètre + paroi + 1,5m / si 2 trappes opposées : zone travail = ½ diamètre + paroi + 1,5 m)	Suffisant	Conforme					

^{(1):} La Norme NF EN 15 259 préconise un conduit vertical (2): Dh : Diamètre hydraulique

2.1.3. - Plan de mesurage

Configuration	Rejet ligne d'incinération
Source homogène selon GAX 43-551 :	Polluants gazeux : mesure en 1 point Polluants particulaires : quadrillage de
Effluents sont issus d'un seul émetteur et absence d'entrée d'air	la section.

2.1.4. - Conditions de fonctionnement et mesurages périphériques

Conditions de fonctionnement de l'installation et mesurages périphériques								
Conditions de fonctionnement de l'installation		Incinération de boues et farines 8,5 t/h (Dont 70% de boues)						
Incident pendant les mesures			Aucun inciden	t				
Teneur en oxygène de référence (O₂ ref)	% 11							
		Essai 1	Essai 2	Essai 3	Moyenne			
Date et durée des essais	24/05/2016	9h56 à 11h57	11h57 à 13h59	13h59 à 16h00	-			
Concentration en O ₂	% volume	12,0	11,6	11,5	11,7			
Concentration en CO ₂	% volume	7,5	7,7	7,9	7,7			
Vitesse au point de mesure	m/s		33,	7 (1)				
Température moyenne des gaz	°C	229 (1)						
Teneur en vapeur d'eau	% volume	23,1 (1)						
Débit des gaz humides aux conditions réelles	m³/h	60935 (1)						
Débit des gaz secs aux conditions normales	Nm³ sec/h		2565	55 (1)				

⁽¹⁾ Moyenne de tous les débits gazeux mesurés dans le conduit, le détail de toutes les mesures est reporté en annexe.

2.1.5. - Résultats des mesures

Le tableau suivant donne les concentrations mesurées lors de l'intervention et les flux calculés à partir des mesures. En face de chaque paramètre sont données les **prescriptions du texte de référence**. Les résultats sont donnés dans les tableaux ci-après en valeurs brutes et en valeurs corrigées à 11% d'O₂.

Les concentrations sont calculées sur gaz sec dans les Conditions Normales de température et de pression (273 kelvins et 1 013 hPa) et exprimées en mg/Nm³ sec (milligrammes par Normaux mètres cubes de gaz sec).

Ligne d'incinération			Essai 1	Essai 2	Essai 3	Moyenne	VLE semi- horaire	Conformité/ VLE semi- horaire	VLE journalière	Blanc de prélèvement à O ₂ ref	C/NC du blanc
	ANALYSE DES GAZ										
Débit gazeux		Nm³ sec/h	24950	25960	25800	25570	-			-	-
Monoxyde de carbone (CO)											
Concentration	Valeur brute	mg/Nm³ sec	14	21	17	17				-	-
Concentration	Valeur corrigée à O ₂ ref	mg/Mm sec	15	22	18	18	100	С	50	-	-
Flux massique		g/h	358	537	435	443				-	-
				Oxydes d	'azote (NOx)						
Concentration	Valeur brute	mgNO ₂ /Nm³ sec	60	54	51	55				-	-
Concentration	Valeur corrigée à O ₂ ref	à O ₂ ref	66	58	54	59	400	С	200	-	-
Flux massique		gNO ₂ /h	1534	1381	1304	1406				-	-
			Compos	és organique	s volatils tot	aux (COVt)					
Concentration	Valeur brute	mgC/Nm³ sec	6,6	4,1	3,3	4,7				-	-
Concentration	Valeur corrigée à O ₂ ref	iligo/Nilis sec	7,3	4,3	3,5	5,0	20	С	10	-	-
Flux massique		gC/h	169	105	84	119				-	-
Date et horaire d	des essais	24/05/2016	9h56 à 11h57	11h57 à 13h59	13h59 à 16h00	-	-			-	-
				Poussiè	res totales						
Concentration	Valeur brute	mg/Nm³ sec	1,2	1,1	1,0	1,1		-		-	-
Concentiation	Valeur corrigée à O ₂ ref	mg/mm sec	1,3	1,2	1,1	1,2	30	С	10	1,1	NC
Flux massique		g/h	31	29	26	19,3		-		-	-
				Dioxyde de	e soufre (SO ₂)					
Concentration	Valeur brute	mg/Nm³ sec	56	92	95	81	-	-		-	-
	Valeur corrigée à O ₂ ref	, and the second	60	99	103	87	200	С	50	0	С
Flux massique		g/h	1400	2381	2459	2080	-	-		-	-
Date et horaire d	des essais	24/05/2016	10h32 à 11h37	11h43 à 12h48	12h54 à 13h58	-	-	-		-	-

	Ligne d'incinération		Essai 1	Essai 2	Essai 3	Moyenne	VLE semi- horaire	Conformité/ VLE semi- horaire	VLE journalière	Blanc de prélèvement à O₂ref	C/NC du blanc
	Acide chlorhydrique (HCI)										
				Acide chiori	nyarıque (HC	1)					
Débit gazeux		Nm³ sec/h	24950	25960	25800	25570		-		-	-
Concentration	Valeur brute	mg/Nm³ sec	2,0	2,9	8,8	4,6					
Concentration	Valeur corrigée à O₂ ref	mg/mm sec	2,1	3,1	9,5	4,9	60	С	10	0	С
Flux massique		g/h	49	75	228	138				-	-
				Ammor	niac (NH₃)						
Concentration	Valeur brute	mg/Nm³ sec	5,6	32	27	21	-	-		-	-
Concentration	Valeur corrigée à O ₂ ref		6,0	35	29	23	-	C*	30	0,3	С
Flux massique		g/h	140	831	691	554	-	-		-	-
Date et horaire d	des essais	24/05/2016	10h32 à 11h37	11h43 à 12h48	12h54 à 13h58	-	-	-		-	-
				Acide fluro	hydrique (HF))					
Débit gazeux		Nm³ sec/h		249	50						
Concentration	Valeur brute	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,6	1						
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	0,66				4	С	1	0,02	С
Flux massique	•	g/h	15						-	-	
Date et horaire d	des essais	24/05/2016		10h32 à	11h37		-			-	-

^{*}par rapport à la VLE journalière

	Ligne d'incinération		Essai	VLE	Conformité/ VLE	Blanc de prélèvement à O₂ref	C/NC du blanc		
	METAUX ET MERCURE								
Débit gazeux		Nm³ sec/h	25960						
		Mercure par	ticulaire et gazeux (F	lg)					
Concentration	Valeur brute	mg/Nm³ sec	0,0087						
Concentration	Valeur corrigée à O ₂ ref	ilig/ivilli 3ec	0,0094	0,05	С	0	С		
Flux massique		g/h	0,23			-	-		
Date et horaire d	les essais	24/05/2016	12h54 à 13h58	-		-	-		
		Cd + Tl (pa	articulaires et gazeux	()	_				
Concentration	Valeur brute	mg/Nm³ sec	0,00015						
Concentration	Valeur corrigée à O ₂ ref		0,00017	0,05	С	0	С		
Flux massique		g/h	11h43 à 12h48			-	=		
	Sb+A	s+Pb+Cr+Co+Cu+I	Vln+Ni+V (particulair	es et gazeu	x)				
Composition	Valeur brute	ma/Nm3 a a a	0,011						
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	0,011	0,5	С	0,0019	С		
Flux massique		g/h	0,28			-	-		
Date et horaire d	les essais	24/05/2016	11h43 à 12h48	-		-	-		
		Dioxines et	furannes (PCDD/PCD	F)					
Débit gazeux		Nm³ sec/h	25655			- [-		
0	Valeur brute	n a ITC	0,0068						
Concentration	Valeur corrigée à O₂ ref	ng ITEQ/Nm³ sec	0,0065	0,1	С	0,00037	С		
Flux massique	<u> </u>	μg ITEQ/h	0,17			-	-		
Date et horaire d	les essais	24/05/2016	9h56 à 16h01	-		-	-		

^{*} Détail des dioxines en annexe

3. - Conclusion

Les éléments qui suivent sont couverts par l'accréditation uniquement pour les résultats finaux déterminés sous accréditation.

La comparaison à la réglementation est précisée dans les tableaux de résultats de mesure.

Les résultats sont comparés aux exigences de l'arrêté préfectoral d'autorisation du 18 juillet 2011 et de l'arrêté ministériel du 20 septembre 2002.

Les résultats respectent la réglementation par rapport aux valeurs limites réglementaires.

Pour la comparaison aux valeurs limites, il n'a pas été tenu compte explicitement de l'incertitude associée au résultat

5. - Modalités opératoires et matériels utilisés

5.1. - Modalités opératoires

Paramètres	Normes utilisées	Précisions sur la méthode	Laboratoire sous traitant
Débit gazeux	ISO 10780	Mesure effectuée au niveau du point de prélèvement au tube de Pitot double selon la norme ISO 10 780. La température sera mesurée par un thermocouple K	
Humidité (1)	NF EN 14 790	Mesure selon NF EN 14 790 par condensation et adsorption de la vapeur dans une ligne de barbotage	
CO2	X 43-300	Analyse en continu par analyseur de gaz automatique. Méthode par infra rouge	
02	NF EN 14789	Analyse en continu par analyseur de gaz automatique. Méthode par paramagnétisme	
со	NF EN 15058	Analyse en continu par analyseur de gaz automatique. Méthode par infra rouge	
NOx	NF EN 14792 (Chimiluminescence)	Analyse en continu par analyseur de gaz automatique avec four de réduction NO2 – NO. Méthode par chimiluminescence	
COV totaux	NF EN 12.619	Analyse en continu par analyseur de gaz automatique FID (détecteur à ionisation de flamme)	
Poussières	NF EN 13 284-1	Prélèvement sur filtre et analyse par gravimétrie	Eurofins Saverne
HCI	NF EN 1911	Prélèvement par barbotage et analyse par chromatographie ionique	Eurofins Saverne
SO2	NF EN 14 791	Prélèvement par barbotage et analyse par chromatographie ionique	Eurofins Saverne
HF	NFX 43 304	Prélèvement sur filtre, barbotage et analyse par ionométrie	Eurofins Saverne
Métaux lourds	NF EN 14 385	Métaux particulaire (fraction filtrée): prélèvement sur filtre et analyse après minéralisation par ICP-MS. Métaux gazeux (fraction passante): prélèvement par barbotage (HNO3 + H2O2) et analyse par ICP-MS	Eurofins Saverne
Hg	NF EN 13 211	Hg particulaire : prélèvement sur filtre et analyse par SFA après minéralisation Hg gazeux : prélèvement par barbotage (K2Cr2O7+HNO3) et analyse par SFA	Eurofins Saverne
NH3	NFX 43 303	Prélèvement par barbotage puis analyse par chromatographie ionique	Eurofins Saverne
PCDD/PCDF (eurodiox)	NF EN 1948-1	Méthode par condensation (sonde refroidie) puis filtration et adsorption sur résine XAD2 (système Eurodiox)	Eurofins Saverne

Test d'étanchéité

Mesures manuelles

Mise sous dépression du système d'échantillonnage et contrôle du débit de fuite (< 2% du débit nominal)

Analyses de gaz en continu

Vérification de la réponse de l'analyseur par introduction du gaz étalon en direct sur l'appareil et en tête de ligne de prélèvement.

5.2. - Observations, écarts aux normes

Observations pour les mesures de métaux lourds selon la norme NF EN 14385

Présence de Cr, Cu, Mn et Pb dans le dernier barboteur (rendement de barbotage > 10 %). Faible incidence vu les concentrations mesurées.

Observations pour les mesures de PCDD/F selon la norme NF EN 1948-1 :

L'isocinétisme n'a pas été respecté lors de la mesure de PCDD/F (81%) du fait de la vitesse élevée des gaz. L'intervalle de tolérance de l'isocinétisme est compris entre 95 et 115%. Faible incidence vu les concentrations mesurées.

Blanc poussières:

les résultats sont rendus hors accréditation COFRAC pour les mesures de poussières. En effet le blanc de prélèvement est non conforme dû à un artéfact d'analyse. Peu d'incidence sur le résultat compte tenu de la faible concentration mesurée sur ce rejet.

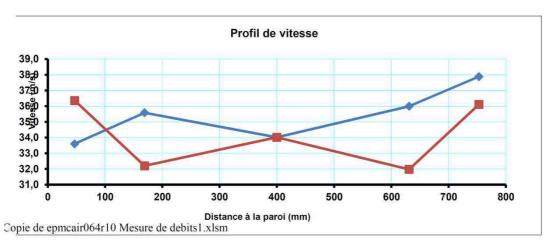
5.3. - Matériels utilisés

Paramètres	Constructeur	Modèle
Vitesse	ARELCO	Pitot double
1110350	KIMO	MP200
Mesure de température	KIMO	MP200
Système de prelevement de gaz en	STI CONCEPT	Coffret MONO POMPE auto-régulée
passerelle	STI CONCEPT	Coffret 4 pompes
HF – Hg – Métaux particulaires	ARELCO	Porte-filtre 90 mm
HCl – HF – SO ₂ - Hg – métaux gazeux	STRIEGEL	Barboteurs frittés en verre borosilicaté
		(250 ml)
PCDD / PCDF	EUROFINS	EURODIOX
Ligne de prelevement gazeux pour les	EFRAPO	Ligne de prélèvement froide (Téflon) avec
analyseurs de gaz	LFRAFO	condenseur en tête de ligne (Hors COV)
Ligne de prélèvement gazeux pour les COV	M et C SIEMENS	Filtre + ligne chauffés
Conditionnement du gaz pour l'analyse en continu	M et C	PS \$10
$O_2 - CO - CO_2 - NOx$	HORIBA	PG 350 (Infra-rouge + chimiluminescence)
cov	JUM	109L (FID) avec filtre + ligne chauffés
Poussières	ARELCO	Porte-filtre 90 mm
Custàmo d'assurisition des denness	CHESSELL	Modèle 5 100 E
Système d'acquisition des donnees	LAB JACK (JUM)	LAB JACK e_log

5.4. - Gaz étalon

Gaz	Concentration	Certification
$O_2/CO_2/CO$	O ₂ : 10 %; CO ₂ : 10 %; CO: 200 ppm qsp N ₂	SCS
C ₃ H ₈	$C_3H_8: 30 \text{ ppm}; O_2: 20 \% \text{ qsp N}_2$	SCS
NO	NO: 200 ppm qsp N ₂	SCS
Air	Gaz de zéro (FID)	Qualité 5.0 MESSER
N_2	Gaz de zéro	Qualité 5.0 MESSER

Annexe 1 : Rejet ligne d'incinération

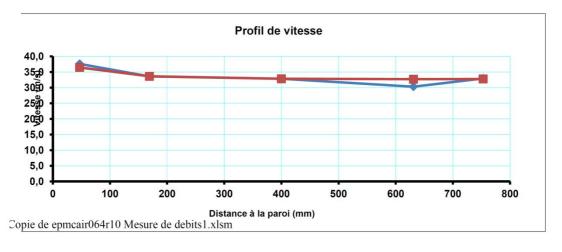

Rejet ligne d'incinération

24/05/2016 9h22

N°	Distance	Ax	e 1	Ax	e 2
point	à la paroi (mm)	Delta P (hPa)	Vitesse (m/s)	Delta P (hPa)	Vitesse (m/s)
1	47	3,64	33,6	4,26	36,4
2	169	4,08	35,6	3,35	32,2
3	400	3,73	34,0	3,73	34,0
4	631	4,18	36,0	3,30	32,0
5	753	4,63	37,9	4,21	36,1

Paramètres	Unités	Valeurs
Masse volumique du gaz de la cheminée	(kg/m ³)	0,649
Masse volumique normale du gaz sec	(kg/Nm ³ sec)	1,325
Diamètre de la cheminée	(m)	0,80
Température du gaz (valeur mesurée)	(°C)	236
Température du gaz (valeur corrigée)	(°C)	236
Pression statique	(hPa)	0,24
Pression atmosphérique	(hPa)	1021
Coefficient d'étalonnage du Tube de Pitot	(-)	1,003
Teneur en eau	(% volumique)	24,1%
Vitesse moyenne	(m/s)	34,9
Débits de la cheminée	(m ³ /h)	63081
Debits de la cheminee	(Nm³ humide/h)	34120

Débit volumique de la cheminée	Nm³ sec / h	25910 ± 560
--------------------------------	-------------	-------------

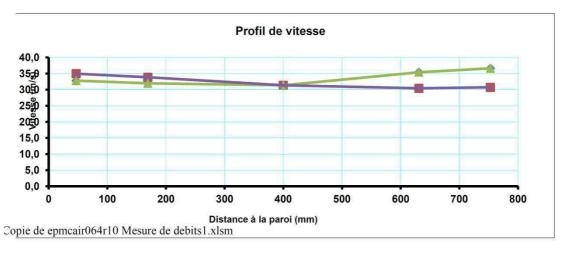

Rejet ligne d'incinération

24/05/2016 11h10

N°	Distance Axe 1		Axe 2		
point	à la paroi (mm)	Delta P (hPa)	Vitesse (m/s)	Delta P (hPa)	Vitesse (m/s)
1	47	4,58	37,6	4,31	36,5
2	169	3,66	33,6	3,66	33,6
3	400	3,49	32,8	3,49	32,8
4	631	2,98	30,3	3,47	32,7
5	753	3,52	32,9	3,48	32,8

Paramètres	Unités	Valeurs
Masse volumique du gaz de la cheminée	(kg/m ³)	0,651
Masse volumique normale du gaz sec	(kg/Nm ³ sec)	1,325
Diamètre de la cheminée	(m)	0,80
Température du gaz (valeur mesurée)	(°C)	233
Température du gaz (valeur corrigée)	(°C)	232
Pression statique	(hPa)	0,23
Pression atmosphérique	(hPa)	1021
Coefficient d'étalonnage du Tube de Pitot	(-)	1,003
Teneur en eau	(% volumique)	24,8%
Vitesse moyenne	(m/s)	33,7
Débits de la cheminée	(m ³ /h)	60901
Debits de la cheminee	(Nm³ humide/h)	33169

Débit volumique de la cheminée	Nm³ sec / h	24950 ± 550

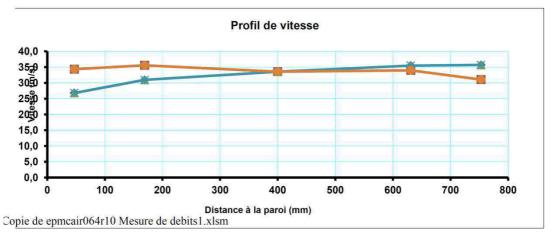

Rejet ligne d'incinération

24/05/2016 12h33

N°	Distance	Axe 1		Ax	e 2
point	à la paroi (mm)	Delta P (hPa)	Vitesse (m/s)	Delta P (hPa)	Vitesse (m/s)
1	47	3,58	32,8	4,07	35,0
2	169	3,40	32,0	3,81	33,9
3	400	3,27	31,3	3,27	31,3
4	631	4,17	35,4	3,08	30,4
5	753	4,46	36,6	3,14	30,7

Paramètres	Unités	Valeurs
Masse volumique du gaz de la cheminée	(kg/m³)	0,669
Masse volumique normale du gaz sec	(kg/Nm ³ sec)	1,325
Diamètre de la cheminée	(m)	0,80
Température du gaz (valeur mesurée)	(°C)	226
Température du gaz (valeur corrigée)	(°C)	226
Pression statique	(hPa)	0,13
Pression atmosphérique	(hPa)	1021
Coefficient d'étalonnage du Tube de Pitot	(-)	1,003
Teneur en eau	(% volumique)	21,4%
Vitesse moyenne	(m/s)	33,1
Débits de la cheminée	(m ³ /h)	59938
Debits de la cheminee	(Nm³ humide/h)	33047

Débit volumique de la cheminée	Nm³ sec / h	25960 ± 550
--------------------------------	-------------	-------------


Rejet ligne d'incinération

24/05/2016 14h33

N°	Distance	Ax	e 1	Ax	e 2
point	à la paroi (mm)	Delta P (hPa)	Vitesse (m/s)	Delta P (hPa)	Vitesse (m/s)
1	47	2,40	26,8	3,94	34,4
2	169	3,20	31,0	4,22	35,6
3	400	3,76	33,6	3,76	33,6
4	631	4,20	35,5	3,86	34,0
5	753	4,25	35,7	3,22	31,1

Paramètres	Unités	Valeurs
Masse volumique du gaz de la cheminée	(kg/m ³)	0,671
Masse volumique normale du gaz sec	(kg/Nm ³ sec)	1,325
Diamètre de la cheminée	(m)	0,80
Température du gaz (valeur mesurée)	(°C)	223
Température du gaz (valeur corrigée)	(°C)	223
Pression statique	(hPa)	0,22
Pression atmosphérique	(hPa)	1021
Coefficient d'étalonnage du Tube de Pitot	(-)	1,003
Teneur en eau	(% volumique)	22,2%
Vitesse moyenne	(m/s)	33,1
Débits de la cheminée	(m ³ /h)	59819
Debits de la cheminee	(Nm³ humide/h)	33204

Débit volumique de la cheminée	Nm³ sec / h	25800 ± 3100
--------------------------------	-------------	--------------

IRH Ingénieur Conseil

MESURE DE LA CONCENTRATION EN POUSSIERES

Société et site : SAVE Cornillé

Lieu de prélèvement - Date : Rejet Ligne d'incinération le 24/05/2016

Horaire et n° d'essai : 10h32 à 11h37 ; 1

	Pression atmosphérique	102,1	kPa
CONDUIT DE PRELEVEMENT			
	Pression statique	0,020	kPa
	Température	229,0	°C
	Vitesse Masse volumique	33,7 1,325	m/s kg/m ³ sur sec à 0°C et 101,3kPa
GAZ PRELEVE SEC LIGNE PRINC		1,323	Kg/III sursec a o C et 101, skPa
	Volume ligne principale	0,851	m ³ sur sec à 0°C et 101,3kPa
	Masse	1,128	kg
GAZ PRELEVE SEC LIGNE DERIV		0.050	3
	Volume ligne dérivée Masse	0,650 0,862	m ³ sur sec à 0°C et 101,3kPa kg
GAZ PRELEVE SEC TOTAL	Wasse	0,002	kg
	Volume total	1,501	m ³ sur sec à 0°C et 101,3kPa
	Masse	1,989	kg
GAZ PRELEVE HUMIDE			· ·
	Volume	1,927	m ³ à 0°C et 101,3kPa
	Masse	2,331	kg
HUMIDITE TOTALE	Magaa dagu ragusilis (daga las 2 las)	240.0	
'	Masse d'eau recueillie (dans les 2 lignes) Teneur en eau mesurée	342,0 171,9	g g/kg
	Rapport de mélange	171,9	g/kg
	Teneur en vésicules	0,0	g/kg
	Rapport volumique	22,1	%
CANNE			
	Diamètre intérieur	5,88	mm
	Masse volumique gaz	0,663	kg/m³
	Volume prélevé réel Débit	3,516 3,516	m³ m³/h
	Vitesse	36,0	m/s
	¥110000	00,0	11110
ISOCINETISME		107	%
FILTRE DE PRELEVEMENT	Repère	106434	
TIETRE DE L'RELEVEMENT	Température de filtration	180	°C
	Identification du flacon de rinçage	RC1	0
	dentineation du lacon de impage	1.01	
CONCENTRATION DU BLANC			
	Identification Filtre blanc	106489	
	Identification Blanc de canne	BC1	
	Masse corrigée blanc de filtre	$1,08 \pm 0,13$	mg
	Masse corrigée blanc de canne	<lq [<0,96]<="" td=""><td>mg</td></lq>	mg
CONCENTRATION EN POUSSIEF	RES		
	Masse corrigée sur filtre	0.90 ± 0.13	mg
	Masse corrigée dans le rinçage	0.95 ± 0.18	mg
	Masse totale de poussière récupérée	1,85 ± 0,22	mg
	Concentration Filtre	$0,60 \pm 0,09$	mg/m³ sur sec à 0°C et 101,3kPa
	Concentration Rinçage	$0,63 \pm 0,12$	mg/m ³ sur sec à 0°C et 101,3kPa
	Concentration blanc de prélèvement	1,02 ± 0,35	mg/m³ sur sec à 0°C et 101,3kPa
		-,	mgm ou sou a o o ot for,ou a
	Concentration globale	1,23 ± 0,15	mg/m³ sur sec à 0°C et 101,3kPa
(Concentration en oxygène dans le conduit	11,7	% vol sur sec
	Concentration en oxygène de référence	11,0	% vol sur sec
Concer	ntration globale retenue à O₂ref	1,33 ± 0,16	mg/m³ sur sec à 0°C et 101,3kPa
Conce	entration blanc de prélèvement à O₂ref	1,09 ± 0,38	mg/m³ sur sec à 0°C et 101,3kPa

Les incertitudes sont données pour un intervalle de confiance de 95% (k=2)

La valeur entre crochets est celle de l'incertitude étendue.

Les valeurs notées <LQ/3 peuvent être interprétées comme égales à zéro.

IRH Ingénieur Conseil

MESURE DE LA CONCENTRATION EN POUSSIERES

Société et site : SAVE Cornillé

Lieu de prélèvement - Date : Rejet Ligne d'incinération le 24/05/2016

Horaire et n° d'essai : 11h43 à 12h48 ; 2

Concentration en oxygène dans le condui Concentration en oxygène de référence Concentration globale retenue à O ₂ re	i 11,7 11,0	% vol sur sec mg/m³ sur sec à 0°C et 101,3kPa
Concentration en oxygène dans le condui	t 11,7	% vol sur sec
Contonia anon giobaic	$0,95 \pm 0,37$	mg/m surseca o Cet ror,skra
Concentration globale		mg/m³ sur sec à 0°C et 101,3kPa
Concentration blanc de prélèvemen	1,07 ± 0,37	mg/m ³ sur sec à 0°C et 101,3kPa
Concentration Rinçage	<lq [<0,68]<="" td=""><td>mg/m³ sur sec à 0°C et 101,3kPa</td></lq>	mg/m ³ sur sec à 0°C et 101,3kPa
Concentration Filtre	0,64 ± 0,09	mg/m³ sur sec à 0°C et 101,3kPa
Masse totale de poussière récupérée		mg
Masse corrigée dans le rinçage	, ,	mg
CONCENTRATION EN POUSSIERES Masse corrigée sur filtre	9 0,91 ± 0,13	mg
-	د ددر _[در,96]	mg
Masse corrigée blanc de filtre Masse corrigée blanc de canne		mg ma
Identification Blanc de canne	BC1	
CONCENTRATION DU BLANC Identification Filtre blanc	106595	
Température de filtration Identification du flacon de rinçage		°C
FILTRE DE PRELEVEMENT Repère		90
ISOCINETISME	. 102	%
Vitesso	34,5	m/s
Débi	,	m³/h
Volume prélevé rée		m ³
Diamètre intérieu Masse volumique ga:	- /	mm kg/m³
CANNE		
ι αρροιτ νοιωπιια	20,1	~
Teneur en vésicules Rapport volumique	,	g/kg %
Rapport de mélange		g/kg
Teneur en eau mesurée	181,8	g/kg
Masse d'eau recueillie (dans les 2 lignes	342,0	g
HUMIDITE TOTALE Masse	2,223	kg
Volume	,	m ³ à 0°C et 101,3kPa
GAZ PRELEVE HUMIDE	1,001	e
Volume tota Masse	,	m ³ sur sec à 0°C et 101,3kPa kg
GAZ PRELEVE SEC TOTAL		3
Masse		kg
GAZ PRELEVE SEC LIGNE DERIVEE Volume ligne dérivée	0,644	m ³ sur sec à 0°C et 101,3kPa
Masse	1,028	kg
Volume ligne principale		m ³ sur sec à 0°C et 101,3kPa
GAZ PRELEVE SEC LIGNE PRINCIPALE	1,323	Kg/m sursec a 0°C et 101,3kPa
Vitesse Masse volumique	33,7 1,325	m/s kg/m ³ sur sec à 0°C et 101,3kPa
Température		°C
Pression statique	0,020	kPa
CONDUIT DE PRELEVEMENT		
Pression atmosphérique	102,1	kPa

Les incertitudes sont données pour un intervalle de confiance de 95% (k=2)

La valeur entre crochets est celle de l'incertitude étendue.

Les valeurs notées <LQ/3 peuvent être interprétées comme égales à zéro.

IRH Ingénieur Conseil

MESURE DE LA CONCENTRATION EN POUSSIERES

Société et site : SAVE Cornillé

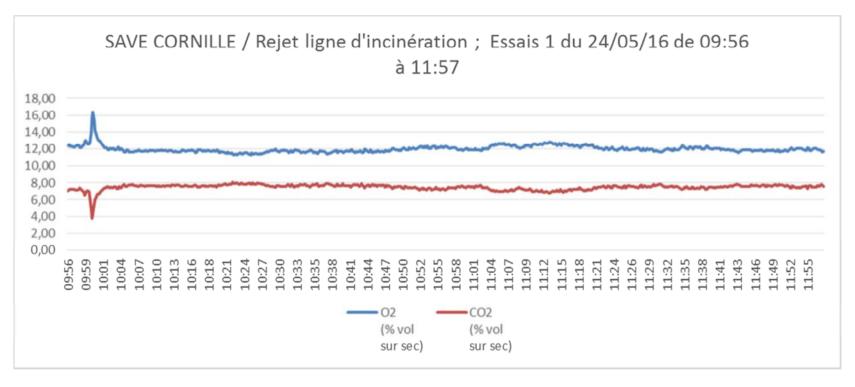
Lieu de prélèvement - Date : Rejet Ligne d'incinération le 24/05/2016

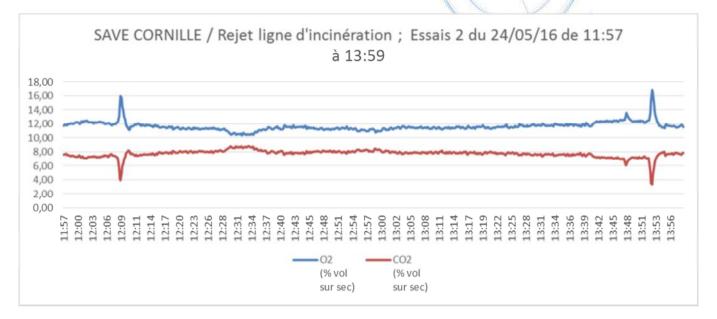
Horaire et n° d'essai : 12h54 à 13h58 ; 3 $\,$

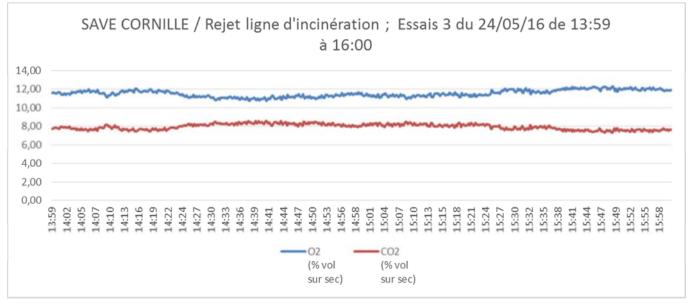
	Pression atmosphérique	102,1	kPa
CONDUIT DE PRELEVEMENT		,	
CONDON DE L'ALLE VEMENT	Pression statique	0,020	kPa
	Température	229,0	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC LIGNE PR	Masse volumique	1,325	kg/m ³ sur sec à 0°C et 101,3kPa
GAZ I KELEVE SEC EIGHE I K	Volume ligne principale	0,831	m ³ sur sec à 0°C et 101,3kPa
	Masse	1,100	kg
GAZ PRELEVE SEC LIGNE DE	RIVEE	,	3
	Volume ligne dérivée	0,656	m ³ sur sec à 0°C et 101,3kPa
	Masse	0,869	kg
GAZ PRELEVE SEC TOTAL			
	Volume total	1,486	m ³ sur sec à 0°C et 101,3kPa
	Masse	1,969	kg
GAZ PRELEVE HUMIDE			2
	Volume	1,912	m ³ à 0°C et 101,3kPa
LUIMBUTE TOTALE	Masse	2,311	kg
HUMIDITE TOTALE	Massa d'agu raquaillig (dans los 2 lignes)	3/12 0	0
	Masse d'eau recueillie (dans les 2 lignes) Teneur en eau mesurée	342,0 173,7	g g/kg
	Rapport de mélange	173,7	
	Teneur en vésicules	0,0	g/kg g/kg
	Rapport volumique	22,3	%
	rapport volumiquo	22,0	70
CANNE			
OAITIL	Diamètre intérieur	5,88	mm
	Masse volumique gaz	0,663	kg/m³
	Volume prélevé réel	3,488	m ³
	Débit	3,488	m³/h
	Vitesse	35,7	m/s
ISOCINETISME		106	%
FILTRE DE PRELEVEMENT	Donèro	106242	
FILTRE DE FRELEVEMIENT	Repère Température de filtration	106243 180	°C
	remperature de initiation	100	C
CONCENTRATION DU BLANC			
	Identification Filtre blanc	106595	
	Identification Blanc de canne	BC1	
	Masse corrigée blanc de filtre	$1,08 \pm 0,13$	mg
	Masse corrigée blanc de canne	<lq [<0,96]<="" td=""><td>mg</td></lq>	mg
	JED 50		
CONCENTRATION EN POUSS		10 1070	
	Masse corrigée sur filtre	<lq [<0,70]<="" td=""><td>mg ma</td></lq>	mg ma
	Masse corrigée dans le rinçage Masse totale de poussière récupérée	<lq [<1,27]<="" td=""><td>mg ma</td></lq>	mg ma
	Masse totale de poussière récupérée	<lq [<1,69]<="" td=""><td>mg</td></lq>	mg
	Concentration Filtre	<lq [<0,47]<="" td=""><td>mg/m³ sur sec à 0°C et 101,3kPa</td></lq>	mg/m³ sur sec à 0°C et 101,3kPa
	Concentration Rinçage	<lq [<0,86]<="" td=""><td>mg/m³ sur sec à 0°C et 101,3kPa</td></lq>	mg/m ³ sur sec à 0°C et 101,3kPa
	· -		_
	Concentration blanc de prélèvement	1,03 ± 0,36	mg/m ³ sur sec à 0°C et 101,3kPa
	Concentration globale	<lq [<1,14]<="" td=""><td>mg/m³ sur sec à 0°C et 101,3kPa</td></lq>	mg/m³ sur sec à 0°C et 101,3kPa
	Concentration en oxygène dans le conduit	11,7	% vol sur sec
	Concentration en oxygène de référence	11,0	% vol sur sec
Cond	entration globale retenue à O₂ref	<lq [<1,23]<="" td=""><td>mg/m³ sur sec à 0°C et 101,3kPa</td></lq>	mg/m³ sur sec à 0°C et 101,3kPa
	ncentration blanc de prélèvement à O ₂ ref	1,10 ± 0,38	mg/m³ sur sec à 0°C et 101,3kPa
	Las insertitudes and day (ingini sui sec a v C et i VI, 3NF a

Les incertitudes sont données pour un intervalle de confiance de 95% (k=2)

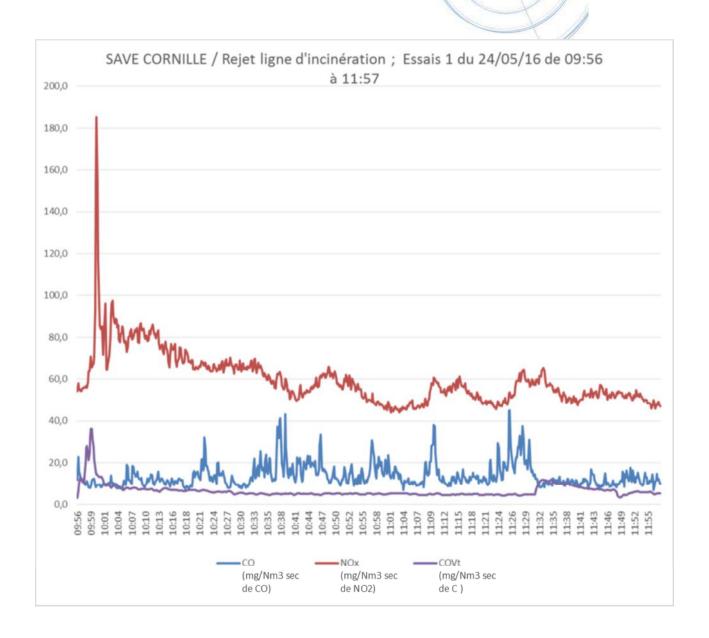
La valeur entre crochets est celle de l'incertitude étendue.

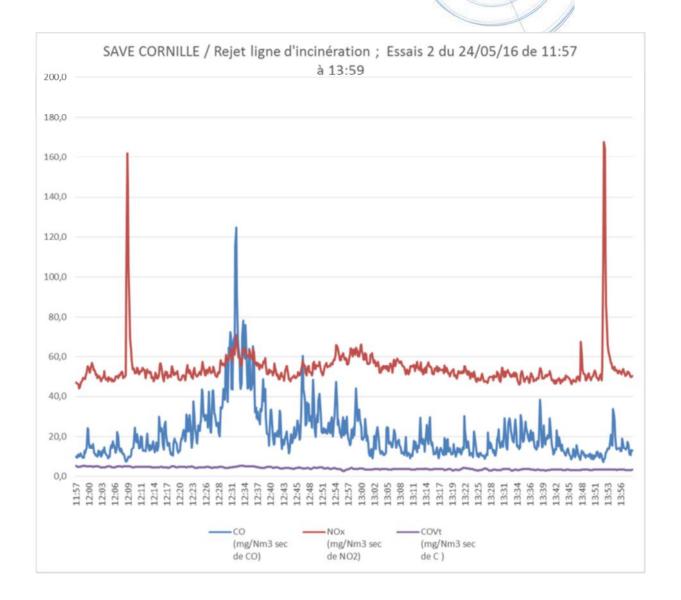

Les valeurs notées <LQ/3 peuvent être interprétées comme égales à zéro.

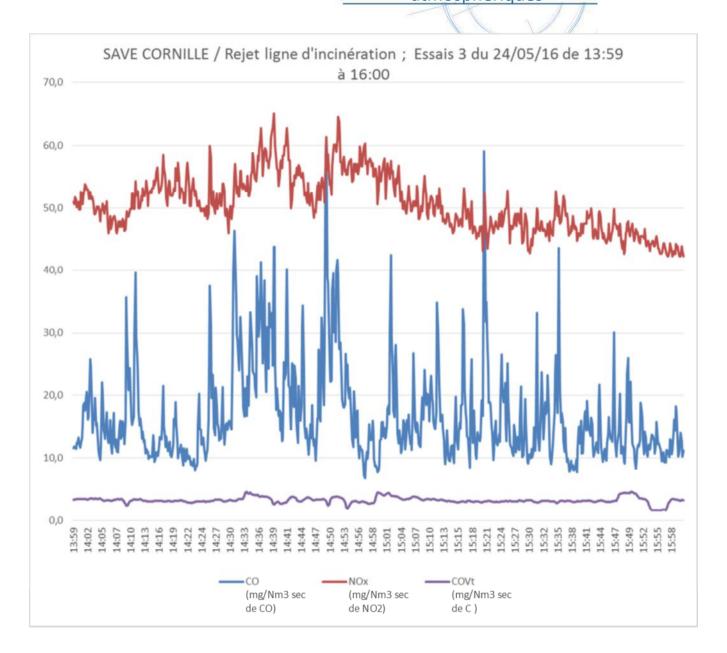

Tableau de résultats avec valeurs à oxygène de référence :


SAVE CORNILLE / Rejet ligne d'incinération

		Essais 1 du 24/05/16 de 09:56 à 11:57				Essais 2 du 24/05/16 de 11:57 à 13:59					Essais 3 du 24/05/16 de 13:59 à 16:00								
		Concent	ration à	O2 réel	Conce	entration	à O2ref	Conce	ntration à	O2 réel	Conce	ntration à	O2ref	Conce	ntration à	O2 réel	Conce	entration	à O2ref
Paramètre	Unité	Valeur		Incertitude	Valeur		Incertitude	Valeur		Incertitude	Valeur		Incertitude	Valeur		Incertitude	Valeur		Incertitude
Faramette	Office	moyenne	±	(k=2)	moyenne	±	(k=2)	moyenne	±	(k=2)	moyenne	±	(k=2)	moyenne	±	(k=2)	moyenne	±	(k=2)
02	(% vol sur sec)	11,96	±	0,68				11,63	±	0,67				11,53	±	0,67			
CO2	(% vol sur sec)	7,5	±	1,0	8,3	±	1,5	7,7	±	1,0	8,3	±	1,4	7,9	±	1,0	8,4	±	1,4
СО	(mg/Nm3 sec de CO)	14	±	16	15	±	20	21	±	16	22	±	19	17	±	16	18	±	18
NOx	(mg/Nm3 sec de NO2)	60	±	15	66	±	20	54	±	15	58	±	18	51	±	15	54	±	18
COVt	(mg/Nm3 sec de C)	6,6	±	4,3	7,3	±	4,8	4,1	±	4,0	4,3	±	4,3	3,3	±	4,0	3,5	±	4,2







Mesure de	(HCI)		
SAVE - CORNILLE Ligne d'incinération	on - 24/06/16 - 10h32 à 11h37		
	Pression atmosphérique	1021,0	hPa
GAINE DE PRE	LEVEMENT		
	Température	229	°C
	Pression statique Vitesse	0,20 33,70	hPa m/s
GAZ PRELEVE	i.		
Sec		0,169	Nm³ (à 0°C)
	Masse Masse volumique	0,224 1,325	kg kg/Nm³
Humide	e Volume	0,216	Nm³
HUMIDITE			
	Masse d'eau	37,8	g
	Teneur en eau mesurée	168,9	g/kg
	Rapport de mélange	168,9	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative Rapport volumique	0,8 21,8	% %
POLLUANT			
(HCI)	Identification du Blanc	BCI	
()	Identification du Barboteur 1	CI1 (B1)	
	Identification du Barboteur 2	CI 1 (B2)	
	Rendement barbotage	<> 100%	
	Concentration du blanc de barboteurs		-
	Volume du blanc de barboteurs Masse dans le blanc de barboteurs	158 <lq 3="" [<0,0086]<="" td=""><td>ml mg Cl⁻</td></lq>	ml mg Cl ⁻
	Concentration de la solution Volume de la solution	1,441 ± 0,150 230	mg Cl ⁻ /l ml
	Masse prélevée	0,331 ± 0,034	mg HCI
	Rapport Blanc / Prélèvement	0%	
	Concentration retenue	1,96 ± 0,21	mg HCI / Nm³ sec
	Blanc de prélèvement	<lq 3="" [<0,052]<="" td=""><td>mg HCI / Nm³ sec</td></lq>	mg HCI / Nm³ sec
Concentra	tion en oxygène dans le conduit	11,7	% vol / gaz sec
	tration en oxygène de référence	11,0	% vol / gaz sec
centration glo	bale à oxygène de reférence	2,11 ± 0,23	mg HCI / Nm³ sec
Blanc de prélèv	vement à oxygène de référence	<lq 3="" [<0,057]<="" td=""><td>mg HCI / Nm³ sec</td></lq>	mg HCI / Nm³ sec

Mesure de	(HCI)					
SAVE - CORNILLE Ligne d'incinération - 24/06/16 - 11h43 à 12h48						
	Pression atmosphérique	1024,0	hPa			
GAINE DE PRE	LEVEMENT					
	Température Pression statique	229 0,20	°C hPa			
	Vitesse	33,70	m/s			
GAZ PRELEVE	<u>:</u>					
Sec		0,174	Nm³ (à 0°C)			
	Masse Masse volumique	0,230 1,325	kg kg/Nm³			
Humide	e Volume	0,228	Nm³			
	Volume	0,220	1411			
HUMIDITE	Masse d'eau	43,7	g			
	Teneur en eau mesurée	189,8	g/kg			
	Rapport de mélange	189,8	g/kg			
	Teneur en vésicules	0,0	g/kg			
	Humidité relative	0,9	%			
	Rapport volumique	23,8	%			
POLLUANT						
(HCI)	Identification du Blanc	B CI				
. ,	Identification du Barboteur 1	CI2				
	Identification du Barboteur 2					
	Rendement barbotage	<> 100%				
	Concentration du blanc de barboteurs	<lq 3="" [<0,054]<="" td=""><td>mg Cl⁻/l</td></lq>	mg Cl ⁻ /l			
	Volume du blanc de barboteurs Masse dans le blanc de barboteurs	171 <lq 3="" [<0,0093]<="" td=""><td>ml mg Cl⁻</td></lq>	ml mg Cl ⁻			
	Concentration de la solution	2.64 . 0.27	ma CI ⁻ /I			
	Volume de la solution	2,61 ± 0,27 192	mg Cl ⁻ /l ml			
	Masse prélevée	$0,502 \pm 0,051$	mg HCI			
	Rapport Blanc / Prélèvement	0%				
	Concentration retenue	$2,89 \pm 0,30$	mg HCI / Nm³ sec			
	Blanc de prélèvement	<lq 3="" [<0,055]<="" th=""><th>mg HCI / Nm³ sec</th></lq>	mg HCI / Nm³ sec			
Concentra	tion en oxygène dans le conduit	11,7	% vol / gaz sec			
	tration en oxygène de référence	11,0	% vol / gaz sec			
ncentration glo	bale à oxygène de reférence	3,11 ± 0,33	mg HCI / Nm³ sec			
Blanc de prélèv	vement à oxygène de référence	<lq 3="" [<0,060]<="" td=""><td>mg HCI / Nm³ sec</td></lq>	mg HCI / Nm³ sec			

Mesure de	(HCI)					
SAVE - CORNILLE Ligne d'incinération - 24/06/16 - 12h54 à 13h58						
	Pression atmosphérique	1024,0	hPa			
GAINE DE PRE	LEVEMENT					
	Température Pression statique	229 0,20	°C hPa			
	Vitesse	33,70	m/s			
GAZ PRELEVE	<u> </u>					
Sec		0,174	Nm³ (à 0°C)			
	Masse Masse volumique	0,231 1,325	kg kg/Nm³			
	·		-			
Humide	e Volume	0,235	Nm³			
HUMIDITE	Managadlanu	40.0	_			
	Masse d'eau Teneur en eau mesurée	48,9 211,9	g a/ka			
	Rapport de mélange	211,9	g/kg g/kg			
	Teneur en vésicules	0,0	g/kg			
	Humidité relative	1,0	%			
	Rapport volumique	25,9	%			
POLLUANT						
(HCI)	Identification du Blanc	Bcl				
	Identification du Barboteur 1	CI3				
	Identification du Barboteur 2					
	Rendement barbotage	<> 100%				
	Concentration du blanc de barboteurs					
	Volume du blanc de barboteurs Masse dans le blanc de barboteurs	171 <lq 3="" [<0,0093]<="" td=""><td>ml mg Cl⁻</td></lq>	ml mg Cl ⁻			
	Concentration de la solution	$7,35 \pm 0,76$	mg Cl /l			
	Volume de la solution	209	ml			
	Masse prélevée	1,537 ± 0,157	mg HCI			
	Rapport Blanc / Prélèvement	0%				
	Concentration retenue	$8,83 \pm 0,93$	mg HCI / Nm³ sec			
	Blanc de prélèvement	<lq 3="" [<0,055]<="" th=""><th>mg HCI / Nm³ sec</th></lq>	mg HCI / Nm³ sec			
Concentra	tion en oxygène dans le conduit	11,7	% vol / gaz sec			
	tration en oxygène de référence	11,0	% vol / gaz sec			
ncentration glo	bale à oxygène de reférence	9,50 ± 1,00	mg HCI / Nm³ sec			
Blanc de prélèv	vement à oxygène de référence	<lq 3="" [<0,060]<="" td=""><td>mg HCI / Nm³ sec</td></lq>	mg HCI / Nm³ sec			

Mesure de	se	(SO ₂)							
SAVE - CORNILLE Ligne d'incinératio	on - 24/06/16 - 10h32 à 11h37								
	Pression atmosphérique 1024,0								
GAINE DE PRE	GAINE DE PRELEVEMENT								
	Température Pression statique Vitesse	229 0,20 33,70	°C hPa m/s						
GAZ PRELEVE									
Sec	: Volume Masse Masse volumique	0,166 0,219 1,325	Nm³ (à 0°C) kg kg/Nm³						
Humide	Volume	0,219	Nm³						
HUMIDITE	Masse d'eau Teneur en eau mesurée Rapport de mélange Teneur en vésicules Humidité relative Rapport volumique	43,0 195,9 195,9 0,0 0,9 24,4	g g/kg g/kg g/kg %						
POLLUANT (SO2)	ldentification du Blanc Identification du Barboteur 1 Identification du Barboteur 2	BS S1 (B1) S1 (B2)							
	Rendement barbotage	99,9%							
	Concentration du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc de barboteurs	<lq 3="" [<0,054]<br="">150 <lq 3="" [<0,0082]<="" td=""><td>mg SO₄/l ml mg SO₄</td></lq></lq>	mg SO ₄ /l ml mg SO ₄						
	Concentration de la solution Volume de la solution	67,4 ± 7,0 138	mg SO ₄ /l ml						
	Masse prélevée	$9,30 \pm 0,95$	mg SO ₂						
	Rapport Blanc / Prélèvement	0%							
	Concentration retenue	56,1 ± 6,0	mg SO ₂ / Nm³ sec						
	Blanc de prélèvement	<lq 3="" [<0,033]<="" td=""><td>$\rm mg~SO_2/Nm^3sec$</td></lq>	$\rm mg~SO_2/Nm^3sec$						
	tion en oxygène dans le conduit	11,7	% vol / gaz sec						
Concent	tration en oxygène de référence	11,0	% vol / gaz sec						
ncentration glo	bale à oxygène de reférence	$60,4 \pm 6,5$	mg SO ₂ / Nm³ sec						

Mesure de	(SO ₂)		
SAVE - CORNILLE Ligne d'incinération	on - 24/06/16 - 11h43 à 12h48		
	hPa		
GAINE DE PRE	LEVEMENT		
	Température	229	°C
	Pression statique Vitesse	0,20 33,70	hPa m/s
GAZ PRELEVE			
Sec	Volume 0,166		Nm³ (à 0°C)
	Masse	0,220	kg
	Masse volumique	1,325	kg/Nm³
Humide	• Volume	0,224	Nm³
HUMIDITE			
	Masse d'eau	47,0	g
	Teneur en eau mesurée	214,0	g/kg
	Rapport de mélange	214,0	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	1,0	%
	Rapport volumique	26,1	%
POLLUANT			
(SO2)	Identification du Blanc	BS	
(/	Identification du Barboteur 1	S2	
	Identification du Barboteur 2		
	Rendement barbotage	<> 100%	
	Concentration du blanc de barboteurs	<lq 3="" [<0,054]<="" td=""><td>mg SO₄/I</td></lq>	mg SO ₄ /I
	Volume du blanc de barboteurs	150	ml
	Masse dans le blanc de barboteurs	<lq 3="" [<0,0082]<="" td=""><td>mg SO₄</td></lq>	mg SO ₄
	Concentration de la solution	$64,7 \pm 6,7$	mg SO ₄ /I
	Volume de la solution	235	ml
	Masse prélevée	15,20 ± 1,55	${\rm mg~SO_2}$
	Rapport Blanc / Prélèvement	0%	
	Concentration retenue	91,7 ± 9,7	mg SO ₂ / Nm³ sec
	Blanc de prélèvement	<lq 3="" [<0,033]<="" td=""><td>mg SO₂ / Nm³ sec</td></lq>	mg SO ₂ / Nm³ sec
Concentra	tion en oxygène dans le conduit	11,7	% vol / gaz sec
Concent	% vol / gaz sec		
	bbale à oxygène de reférence	11,0 98,7 ± 10,4	mg SO ₂ / Nm³ sec
3.0		,,-	3 2 300

Mesure de	(SO ₂)		
SAVE - CORNILLE Ligne d'incinération	on - 24/06/16 - 12h54 à 13h58		
	hPa		
GAINE DE PRE	LEVEMENT		
	Température Pression statique Vitesse	229 0,20 33,70	°C hPa m/s
GAZ PRELEVE			
Sec	Volume Masse Masse volumique	0,170 0,225 1,325	Nm³ (à 0°C) kg kg/Nm³ Nm³
Humide	e Volume	0,230	
HUMIDITE	Masse d'eau Teneur en eau mesurée Rapport de mélange Teneur en vésicules Humidité relative Rapport volumique	48,6 216,4 216,4 0,0 1,0 26,3	g g/kg g/kg g/kg %
POLLUANT (SO2)	ldentification du Blanc Identification du Barboteur 1 Identification du Barboteur 2	BS S3	
	Rendement barbotage	<> 100%	
	Concentration du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc de barboteurs	<lq 3="" [<0,054]<br="">150 <lq 3="" [<0,0082]<="" td=""><td>mg SO₄/l ml mg SO₄</td></lq></lq>	mg SO ₄ /l ml mg SO ₄
	Concentration de la solution Volume de la solution	63,1 ± 6,6 256	mg SO ₄ /I ml
	Masse prélevée	16,15 ± 1,65	${\rm mg~SO_2}$
Rapport Blanc / Prélèvement		0%	
	Concentration retenue	95,3 ± 10,0	mg SO ₂ / Nm³ sec
	Blanc de prélèvement	<lq 3="" [<0,032]<="" td=""><td>$\rm mg~SO_2/Nm^3sec$</td></lq>	$\rm mg~SO_2/Nm^3sec$
	tion en oxygène dans le conduit	11,7	% vol / gaz sec
Concent	tration en oxygène de référence	11,0	% vol / gaz sec
ncentration glo	bale à oxygène de reférence	102,5 ± 10,8	mg SO ₂ / Nm³ sec

Mesure de la concentration gazeuse (NH ₃)								
SAVE - CORNILLE Ligne d'incinération - 24/05/16 - 10h32 à 11h37								
	Pression atmosphérique	1024,0	hPa					
GAINE DE PRELEVEMENT								
	Température Pression statique Vitesse	229 0,20 33,70	°C hPa m/s					
GAZ PRELEVE								
•	Sec Volume Masse Masse volumique	0,145 0,192 1,325	Nm³ (à 0°C) kg kg/Nm³					
Hum	nide Volume	0,168	Nm³					
HUMIDITE								
	Masse d'eau Teneur en eau mesurée Rapport de mélange Teneur en vésicules Humidité relative Rapport volumique	18,3 95,4 95,4 0,0 0,5 13,6	g g/kg g/kg g/kg % %					
POLLUANT (NH3)	Identification du Blanc Identification du Barboteur 1 Identification du Barboteur 2 Rendement barbotage	BNH NH1 B1 NH1 B2 92,0%						
	Concentration du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc de barboteurs	<lq [<0,054]<br="">170 <lq [<0,0092]<="" td=""><td>mg NH₄⁺/l ml mg NH₄⁺</td></lq></lq>	mg NH ₄ ⁺ /l ml mg NH ₄ ⁺					
	Concentration de la solution Volume de la solution	4,61 ± 0,44 176	mg NH ₄ ⁺ /l ml					
	Masse prélevée	0,811 ± 0,076	mg NH₃					
	Rapport Blanc / Prélèvement	0%						
	Concentration retenue	5,60 ± 0,56	mg NH ₃ / Nm³ sec					
_	Blanc de prélèvement	<lq [<0,060]<="" td=""><td>mg NH₃ / Nm³ sec</td></lq>	mg NH ₃ / Nm³ sec					
Cond		% vol / gaz sec						
Concentration	11,0 6,03 ± 0,60	% vol / gaz sec mg NH ₃ / Nm ³ sec						
Blanc de	<lq [<0,065]<="" td=""><td>mg NH₃ / Nm³ sec</td></lq>	mg NH ₃ / Nm ³ sec						

Mesure de la concentration gazeuse (NH ₃)							
SAVE - CORNILLE Ligne d'incinération - 24/05/16 - 11h43 à 12h48							
	Р	ression atmosphérique	1024,0	hPa			
GAINE DE PRELEVEME							
		Température Pression statique Vitesse	229 0,20 33,70	°C hPa m/s			
GAZ PRELEVE	_						
	Sec	Volume Masse Masse volumique	0,128 0,169 1,325	Nm³ (à 0°C) kg kg/Nm³			
н	umide	Volume	0,168	Nm³			
HUMIDITE							
	7	Masse d'eau l'eneur en eau mesurée Rapport de mélange Teneur en vésicules Humidité relative Rapport volumique	32,6 192,4 192,4 0,0 0,9 24,1	g g/kg g/kg g/kg % %			
POLLUANT (NH3)		Identification du Blanc ntification du Barboteur 1 ntification du Barboteur 2 Rendement barbotage	BNH NH2 <> 100%				
	Volu	tration du blanc de barboteurs me du blanc de barboteurs e dans le blanc de barboteurs	<lq [<0,054]<br="">170 <lq [<0,0092]<="" td=""><td>mg NH₄⁺/l ml mg NH₄⁺</td></lq></lq>	mg NH ₄ ⁺ /l ml mg NH ₄ ⁺			
	Co	ncentration de la solution Volume de la solution	18,69 ± 1,94 219	mg NH ₄ ⁺ /l ml			
		Masse prélevée	$4,09 \pm 0,42$	mg NH ₃			
	Ra	pport Blanc / Prélèvement	0%				
Concentration retenue			$32,0 \pm 3,4$	mg NH ₃ / Nm ³ sec			
	В	lanc de prélèvement	<lq [<0,068]<="" td=""><td>$mg\ NH_3$ / Nm^3 sec</td></lq>	$mg\ NH_3$ / Nm^3 sec			
Concentration en oxygène dans le conduit			11,7	% vol / gaz sec			
Concentration en oxygène de référence			11,0	% vol / gaz sec			
Concentration globale à oxygène de reférence			$34,5 \pm 3,6$	mg NH ₃ / Nm³ sec			
Blanc de prélèvement à oxygène de référence			<lq [<0,074]<="" td=""><td>mg NH₃ / Nm³ sec</td></lq>	mg NH ₃ / Nm³ sec			

IRH INGENIEUR CONSEIL

Mesure de la concentration gazeuse (NH ₃)				
SAVE - CORNILLE Ligne d'incinération - 24/05/16 - 12h54 à 13h58				
	Pression atmosphérique	1024,0	hPa	
GAINE DE PRELEVEMENT				
	Température Pression statique Vitesse	229 0,20 33,70	°C hPa m/s	
GAZ PRELEVE	Valore -	0.407	NI2 (2 000)	
Sec	Volume Masse Masse volumique	0,137 0,182 1,325	Nm³ (à 0°C) kg kg/Nm³	
Humide	Volume	0,172	Nm³	
HUMIDITE				
	Masse d'eau Teneur en eau mesurée Rapport de mélange Teneur en vésicules Humidité relative Rapport volumique	28,3 155,6 155,6 0,0 0,8 20,4	g g/kg g/kg g/kg %	
POLLUANT (NH3)	Identification du Blanc Identification du Barboteur 1 Identification du Barboteur 2 Rendement barbotage	BNH NH3 <> 100%		
	Concentration du blanc de barboteurs	<lq [<0,054]<="" td=""><td>mg NH₄⁺/l</td></lq>	mg NH₄⁺/l	
	Volume du blanc de barboteurs Masse dans le blanc de barboteurs	170 <lq [<0,0092]<="" th=""><th>ml mg NH₄⁺</th></lq>	ml mg NH ₄ ⁺	
	Concentration de la solution Volume de la solution	16,52 ± 1,72 223	mg NH ₄ ⁺ /l ml	
	Masse prélevée	$3,68 \pm 0,38$	mg NH ₃	
	Rapport Blanc / Prélèvement	0%		
Conce	Concentration retenue Blanc de prélèvement tration en oxygène dans le conduit entration en oxygène de référence globale à oxygène de reférence	26,8 ± 2,8 <lq 11,0="" 11,7="" 28,9="" 3,0<="" [<0,063]="" td="" ±=""><td>mg NH₃ / Nm³ sec mg NH₃ / Nm³ sec % vol / gaz sec % vol / gaz sec mg NH₃ / Nm³ sec</td></lq>	mg NH ₃ / Nm ³ sec mg NH ₃ / Nm ³ sec % vol / gaz sec % vol / gaz sec mg NH ₃ / Nm ³ sec	
	lèvement à oxygène de référence	<lq [<0,069]<="" td=""><td>mg NH₃ / Nm³ sec</td></lq>	mg NH ₃ / Nm ³ sec	

Mesure de la concentration en HF particulaires

SOCIETE ET SITE SAVE - CORNILLE

U DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 10h32 à 11h37

CONDUIT DE PRELEVEMENT	Pression atmosphérique	1024,0	hPa
CONDON DE I RELEVEMENT	Gaine de prélèvement	Conduit de Ø :	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
{ dont 0,652 Nm3 sur 1 ligne(s) dérivée(s) }	Volume total	1,506	m ³ (à 0°C et 101,3kPa)
	Masse	1,996	kg
	Masse volumique	1,325	kg/m³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE	·	•	•
	Volume	1,925	m ³ (à 0°C et 101,3kPa)
	Masse	2,332	kg
HUMIDITE TOTALE			•
{ dont 32,1 g sur 2 ligne(s) dérivée(s) }	Masse d'eau recueillie	336,6	g
	Teneur en eau mesurée	168,7	g/kg
	Rapport de mélange	168,7	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,8	%
	Rapport volumique	21,8	%
	Température de rosée	62,1	°C
CANNE			
	Numéro d'indentification de la buse	Inati06b	
	Diamètre interieur	5,88	mm
	Masse volumique gaz	0,666	kg/m³
	Volume prélevé réel	3,502	m³
	Débit	3,502	m³/h
	Vitesse	35,9	m/s
ISOCINETISME		106	%

Identification des supports de prélèvements particula	
Blanc de filtre	106489
Flacon de rinçage du blanc	BC1
Filtre	106434
Flacon de rinçage canne	RC1

Mesure de la concentration en HF particulaires

SOCIETE ET SITE SAVE - CORNILLE

U DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 10h32 à 11h37

CONDUIT DE PRELEVEMENT	Pression atmosphérique	1024,0	hPa
CONDON DET RELEVEMENT	Gaine de prélèvement	Conduit de Ø :	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
{ dont 0,652 Nm3 sur 1 ligne(s) dérivée(s) }	Volume total	1,506	m ³ (à 0°C et 101,3kPa)
(, <u>-</u> g (-,(-, ,	Masse	1,996	kg
	Masse volumique	1,325	kg/m ³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE	·	•	
	Volume	1,925	m ³ (à 0°C et 101,3kPa)
	Masse	2,332	kg
HUMIDITE TOTALE			•
{ dont 32,1 g sur 2 ligne(s) dérivée(s) }	Masse d'eau recueillie	336,6	g
	Teneur en eau mesurée	168,7	g/kg
	Rapport de mélange	168,7	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,8	%
	Rapport volumique	21,8	%
	Température de rosée	62,1	°C
CANNE			
	Numéro d'indentification de la buse	Inati06b	
	Diamètre interieur	5,88	mm
	Masse volumique gaz	0,666	kg/m³
	Volume prélevé réel	3,502	m³
	Débit	3,502	m³/h
	Vitesse	35,9	m/s
ISOCINETISME		106	%

Identification des supports de prélèveme	nts particulaires
Blanc de filtre	106489
Flacon de rinçage du blanc	BC1
Filtre	106434
Flacon de rinçage canne	RC1

Mesure de la concentration en HFgazeux

SOCIETE ET SITE SAVE - CORNILLE

U DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 10h32 à 11h37

	Pression atmosphérique	1024,0	hPa
CONDUIT DE PRELEVEMENT	Gaine de prélèvement	Conduit de Ø:	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
(sur ligne dérivée)	Volume total	0,172	m ³ (à 0°C et 101,3kPa)
(can ig.ia denies)	Masse	0,228	kg
	Masse volumique	1,325	kg/m ³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE			
	Volume	0,212	m ³ (à 0°C et 101,3kPa)
	Masse	0,260	kg
HUMIDITE TOTALE			
	Masse d'eau recueillie	32,100	g
	Teneur en eau mesurée	140,6	g/kg
	Rapport de mélange	140,6	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,7	%
	Rapport volumique	18,8	%
	Température de rosée	59,0	°C

Identification des supports de prélè	vement gazeux
Barboteur blanc	BF
Barboteur 1 + 2	F1 B1
Barboteur 3	F1 B2

CUMULATIF DES HF GAZEUX ET PARTICULAIRES

SAVE - CORNILLE

Ligne d'incinération - 24/05/16 - 10h32 à 11h37

Les volumes sont calculés sur sec à 0°C et 101,3kPa

METAL	Concentration Particulaire	Concentration Gazeuse	TOTAL	TOTAL à O2 de référence
	(mg/m³)	(mg/m³)	(mg/m³)	(mg/m³)
HF	<lq [<0,0317]<="" th=""><th>$0,597 \pm 0,066$</th><th>$0,614 \pm 0,068$</th><th>$0,661 \pm 0,073$</th></lq>	$0,597 \pm 0,066$	$0,614 \pm 0,068$	$0,661 \pm 0,073$

Blanc de site

Concentration

(mg/m³)

<LQ [<0,031]

(La concentration à O2ref est ramenée à une teneur de 11,0 % d'oxygène) Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) La valeur entre crochets est celle de l'incertitude étendue. Les valeurs notées <LQ/3 peuvent être interprétées comme égales à zéro.

Mesure de la concentration en métaux lourds particulaires

SOCIETE ET SITE SAVE - CORNILLE

LIEU DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 11h43 à 12h48

CONDUIT DE PRELEVEMENT	Pression atmosphérique	1024,0	hPa
CONDOIT DE PRELEVEMENT	Gaine de prélèvement	Conduit de Ø :	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
{ dont 0,646 Nm3 sur 1 ligne(s) dérivée(s) }	Volume total	1,424	m ³ (à 0°C et 101,3kPa)
• • • • • • • • • • • • • • • • • • • •	Masse	1,886	kg
	Masse volumique	1,325	kg/m³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE			
	Volume	1,856	m ³ (à 0°C et 101,3kPa)
	Masse	2,234	kg
HUMIDITE TOTALE			
{ dont 39,2 g sur 2 ligne(s) dérivée(s) }	Masse d'eau recueillie	347,5	g
	Teneur en eau mesurée	184,2	g/kg
	Rapport de mélange	184,2	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,9	%
	Rapport volumique	23,3	%
	Température de rosée	63,6	°C
CANNE			
	Numéro d'indentification de la buse	Inati06b	
	Diamètre interieur	5,88	mm
	Masse volumique gaz	0,662	kg/m³
	Volume prélevé réel	3,376	m³
	Débit	3,376	m³/h
	Vitesse	34,6	m/s
ISOCINETISME		103	%

Identification des supports de prélèvements particulaires	s (tous métaux)
Blanc de filtre	106595
Flacon de rinçage du blanc	BRM
Filtre	105512
Flacon de rinçage canne	RC2

Mesure de la concentration en métaux lourds gazeux

SOCIETE ET SITE SAVE - CORNILLE

U DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 11h43 à 12h48

CONDUIT DE PRELEVEMENT	Pression atmosphérique	1024,0	hPa
CONSON SET NELEVEMENT	Gaine de prélèvement	Conduit de Ø :	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
(sur ligne dérivée)	Volume total	0,179	m ³ (à 0°C et 101,3kPa)
	Masse	0,237	kg
	Masse volumique	1,325	kg/m ³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE			
	Volume	0,228	m ³ (à 0°C et 101,3kPa)
	Masse	0,276	kg
HUMIDITE TOTALE			
	Masse d'eau recueillie	39,200	g
	Teneur en eau mesurée	165,5	g/kg
	Rapport de mélange	165,5	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,8	%
	Rapport volumique	21,4	%
	Température de rosée	61,8	°C

Identification des supports de pré	lèvement gazeux
Barboteur bland	c BM2
Barboteur 1 + 2	2 M2 (B1+B2)
Barboteur 3	3 M2 (B3)

CUMULATIF METAUX LOURDS

SAVE - CORNILLE

Ligne d'incinération - 24/05/16 - 11h43 à 12h48

Les volumes sont calculés sur sec à 0°C et 101,3kPa					
METAL	Concentration Particulaire	Concentration Gazeuse	TOTAL	TOTAL à O2 de référence	
	(mg/m³)	(mg/m³)	(mg/m³)	(mg/m³)	
Cadmium	<lq 3="" [<0,000027]<="" th=""><th><lq 3="" [<0,000075]<="" th=""><th><lq 3="" [<0,000079]<="" th=""><th><lq 3="" [<0,000085]<="" th=""></lq></th></lq></th></lq></th></lq>	<lq 3="" [<0,000075]<="" th=""><th><lq 3="" [<0,000079]<="" th=""><th><lq 3="" [<0,000085]<="" th=""></lq></th></lq></th></lq>	<lq 3="" [<0,000079]<="" th=""><th><lq 3="" [<0,000085]<="" th=""></lq></th></lq>	<lq 3="" [<0,000085]<="" th=""></lq>	
Thallium	0,000155 ± 0,000050	<lq 3="" [<0,000186]<="" th=""><th>0,000155 ± 0,000193</th><th>0,00017 ± 0,00021</th></lq>	0,000155 ± 0,000193	0,00017 ± 0,00021	
Groupe 1			0,00015 ± 0,00021	0,00017 ± 0,00022	

Blanc de site	
Concentration	Rendement barbotage
(mg/m³)	
<lq 3="" [<0,00074]<="" td=""><td>0%</td></lq>	0%
<lq 3="" [<0,00118]<="" td=""><td>0%</td></lq>	0%
<lq 3="" [<0,00139]<="" td=""><td></td></lq>	

Arsenic <lq 3="" <lq="" [<0,000075]<="" [<0,000200]="" th=""><th>0,000088 ± 0,000135</th><th>0,000094 ± 0,000145</th></lq>		0,000088 ± 0,000135	0,000094 ± 0,000145
Groupe 2		0,000088 ± 0,000135	0,000094 ± 0,000145

<lq 3="" [<0,00074]<="" th=""><th>0%</th></lq>	0%
<lq 3="" [<0,00074]<="" th=""><th></th></lq>	
0.00009 + 0.00118	31%

Plomb	$0,000509 \pm 0,000120$	0,00045 ± 0,00040	0,00096 ± 0,00041	0,00103 ± 0,00044
Groupe 3		0,00096 ± 0,00041	0,00103 ± 0,00044	

0,00009 ± 0,00118	31%
0,00009 ± 0,00118	

Antimoine	<lq 3="" [<0,000068]<="" th=""><th><lq 3="" [<0,000075]<="" th=""><th><lq 3="" [<0,000101]<="" th=""><th><lq 3="" [<0,000108]<="" th=""></lq></th></lq></th></lq></th></lq>	<lq 3="" [<0,000075]<="" th=""><th><lq 3="" [<0,000101]<="" th=""><th><lq 3="" [<0,000108]<="" th=""></lq></th></lq></th></lq>	<lq 3="" [<0,000101]<="" th=""><th><lq 3="" [<0,000108]<="" th=""></lq></th></lq>	<lq 3="" [<0,000108]<="" th=""></lq>
Chrome	0,00197 ± 0,00026	0,001949 ± 0,000174	$0,00392 \pm 0,00031$	0,00421 ± 0,00034
Cobalt	<lq [<0,000080]<="" th=""><th><lq [<0,000151]<="" th=""><th>$0,000092 \pm 0,000104$</th><th>0,000099 ± 0,000112</th></lq></th></lq>	<lq [<0,000151]<="" th=""><th>$0,000092 \pm 0,000104$</th><th>0,000099 ± 0,000112</th></lq>	$0,000092 \pm 0,000104$	0,000099 ± 0,000112
Cuivre	<lq [<0,00080]<="" th=""><th>0,00110 ± 0,00029</th><th>$0,00145 \pm 0,00053$</th><th>0,00156 ± 0,00057</th></lq>	0,00110 ± 0,00029	$0,00145 \pm 0,00053$	0,00156 ± 0,00057
Manganèse	$0,00285 \pm 0,00076$	0,00045 ± 0,00040	$0,00330 \pm 0,00086$	$0,00355 \pm 0,00092$
Nickel	0,00070 ± 0,00057	<lq 3="" [<0,00075]<="" th=""><th>0,00070 ± 0,00094</th><th>0,00076 ± 0,00101</th></lq>	0,00070 ± 0,00094	0,00076 ± 0,00101
Vanadium	0,000133 ± 0,000042	<lq 3="" [<0,000075]<="" th=""><th>0,000133 ± 0,000085</th><th>0,000144 ± 0,000092</th></lq>	0,000133 ± 0,000085	0,000144 ± 0,000092
	Groupe 4		0,00959 ± 0,00143	0,01031 ± 0,00153

<lq 3="" [<0,00074]<="" th=""><th>0%</th></lq>	0%
$0,\!00074 \pm 0,\!00118$	19%
0,00004 ± 0,00074	0%
<lq 3="" [<0,00119]<="" th=""><th>13%</th></lq>	13%
$0,00043 \pm 0,00118$	31%
$0,0004 \pm 0,0024$	0%
0,00029 ± 0,00074	0%
0,0018 ± 0,0034	

SOMME	0.01079 ± 0.00151	0.01161 ± 0.00162

<LQ [<0,0059]

(La concentration à O2ref est ramenée à une teneur de 11,0 % d'oxygène) Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) La valeur entre crochets est celle de l'incertitude étendue. Les valeurs notées <LQ/3 peuvent être interprétées comme égales à zéro.

Mesure de la concentration en métaux lourds particulaires

SOCIETE ET SITE SAVE - CORNILLE

U DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 12h24 à 13h58

CONDUIT DE PRELEVEMENT	Pression atmosphérique	1024,0	hPa
OONDON DET RELEVEMENT	Gaine de prélèvement	Conduit de Ø :	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
{ dont 0,657 Nm3 sur 1 ligne(s) dérivée(s) }	Volume total	1,492	m ³ (à 0°C et 101,3kPa)
(, (-, (-, (-,	Masse	1,976	kg
	Masse volumique	1,325	kg/m ³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE	·	•	
	Volume	1,928	m ³ (à 0°C et 101,3kPa)
	Masse	2,327	kg
HUMIDITE TOTALE		•	· ·
{ dont 125,8 g sur 2 ligne(s) dérivée(s) }	Masse d'eau recueillie	350,5	g
	Teneur en eau mesurée	177,3	g/kg
	Rapport de mélange	177,3	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,8	%
	Rapport volumique	22,6	%
	Température de rosée	63,0	°C
CANNE			
	Numéro d'indentification de la buse	Inati06b	
	Diamètre interieur	5,88	mm
	Masse volumique gaz	0,664	kg/m³
	Volume prélevé réel	3,507	m³
	Débit	3,507	m³/h
	Vitesse	35,9	m/s
ISOCINETISME		107	%

Identification des supports de prélèvements particulaires	(tous métaux)
Blanc de filtre	106595
Flacon de rinçage du blanc	BRM
Filtre	106243
Flacon de rinçage canne	RC3

Mesure de la concentration en mercure gazeux

SOCIETE ET SITE **SAVE - CORNILLE**

U DE PRELEVEMENT - DATE - HORAIRE Ligne d'incinération - 24/05/16 - 12h24 à 13h58

CONDUIT DE PRELEVEMENT	Pression atmosphérique	1024,0	hPa
CONDON DE I RELEVEMENT	Gaine de prélèvement	Conduit de Ø :	800 mm
	Section	0,50	m²
	Pression statique	0	hPa
	Température	229	°C
	Vitesse	33,7	m/s
GAZ PRELEVE SEC TOTAL			
(sur ligne dérivée)	Volume total	0,176	m ³ (à 0°C et 101,3kPa)
	Masse	0,233	kg
	Masse volumique	1,325	kg/m ³ (à 0°C et 101,3kPa)
GAZ PRELEVE HUMIDE			
	Volume	0,229	m ³ (à 0°C et 101,3kPa)
	Masse	0,276	kg
HUMIDITE TOTALE			
	Masse d'eau recueillie	42,700	g
	Teneur en eau mesurée	183,2	g/kg
	Rapport de mélange	183,2	g/kg
	Teneur en vésicules	0,0	g/kg
	Humidité relative	0,9	%
	Rapport volumique	23,2	%
	Température de rosée	63,5	°C

Identification des supports de prélè	vement gazeux
Barboteur blanc mercure	B Hg
Barboteur 1 + 2 (mercure)	Hg 3 (B1+B2)
Barboteur 3 (mercure)	Hg 3 (B3)

CUMULATIF METAUX LOURDS

SAVE - CORNILLE

Ligne d'incinération - 24/05/16 - 12h24 à 13h58

Les volumes	sont calculés	sur sec à	0°C et	101,3kPa	

METAL	Concentration Particulaire	Concentration Gazeuse	TOTAL	TOTAL à O ₂ de référence	
	(mg/m³)	(mg/m³)	(mg/m³)	(mg/m³)	
Mercure <lq 0,0026<="" 0,0087="" [<0,00025]="" th="" ±=""><th>0,0087 ± 0,0026</th><th>0,0094 ± 0,0028</th></lq>		0,0087 ± 0,0026	0,0094 ± 0,0028		
	Groupe 1		0,0087 ± 0,0026	0,0094 ± 0,0028	

SOMME	$0,\!0087 \pm 0,\!0026$	0,0094 ± 0,0028

Blanc de site	
Concentration	Rendement barbotage
(mg/m³)	
<lq 3="" [<0,00189]<="" td=""><td>0%</td></lq>	0%
<lq 3="" [<0,00189]<="" td=""><td></td></lq>	

<LQ/3 [<0,00189]

(La concentration à O2ref est ramenée à une teneur de 11,0 % d'oxygène) Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) La valeur entre crochets est celle de l'incertitude étendue. Les valeurs notées <LQ/3 peuvent être interprétées comme égales à zéro.

MESURE DE PCDD et PCDF

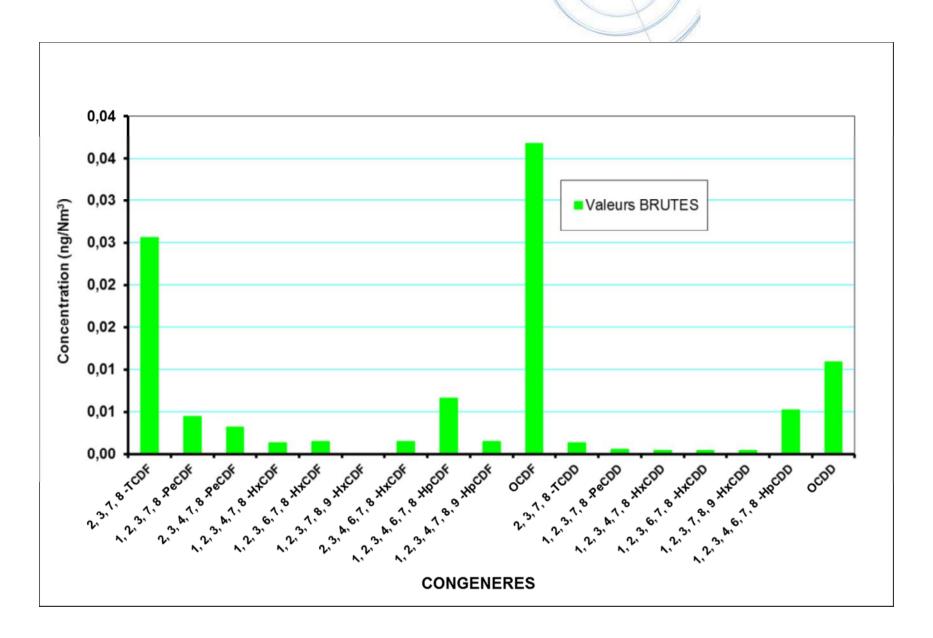
SOCIETE ET SITE: SAVE - CORNILLE

Lieu de prélèvement, date et horaire : Ligne d'incinération - 24/05/16 - 9h56 à 16h01

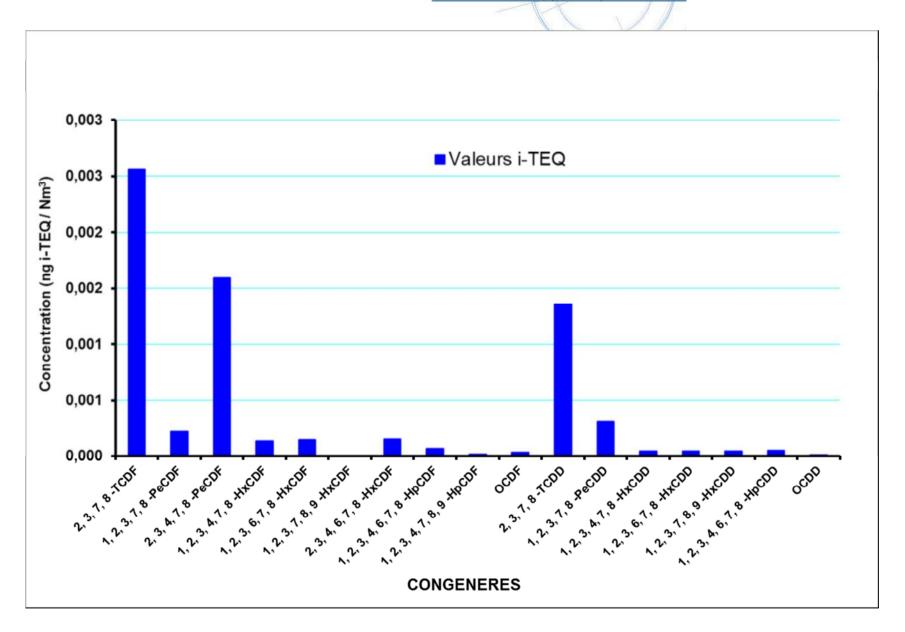
Supports échantillons C#59544+C#59540 ; C#57349+C#58683+Cond1 + Cond 2

	Chaîne	Eurodiox	
CONDUIT DE PRELEVEMENT	Pression atmosphérique :	1024,0	hPa
CONDOTT DE PRELEVEMENT	Gaine de prélèvement : Section :	Conduit de Ø : 0,50	800 mm m ²
	Pression statique:	0	hPa
	Température :	229	°C
	Vitesse :	33,7	m/s
GAZ PRELEVE SEC TOTAL			
	Volume total:	6,835	Nm³ (à 0°C)
	Masse:	9,057	kg
	Masse volumique:	1,325	kg/Nm ³
GAZ PRELEVE HUMIDE	•		
	Volume:	8,888	Nm ³
	Masse :	10,707	kg
HUMIDITE TOTALE		-, -	3
TOTALL	Teneur en eau mesurée :	182,2	g/kg
	Rapport de mélange :	182,2	g/kg
	Teneur en vésicules :	0,0	g/kg
	Humidité relative :	0,8	%
	Rapport volumique:	23,1	%
	Température de rosée :	63,4	°C
CANNE	remperatare de resee :	00,4	O
	Numéro d'indentification de la buse :	XTITAN6	
	Diamètre interieur :	5,90	mm
	Masse volumique gaz :	0,662	kg/m³
	Volume prélevé réel :	16,170	m ³
	Débit :	2,695	m³/h
	Vitesse :	27,4	m/s
	1.10000	,.	,0
ISOCINETISME	:	81	%
BLANC DE SITE			
BEARC DE SITE	Masse :	<lq [<0,00393]<="" th=""><th>ng ITEQ</th></lq>	ng ITEQ
	Concentration :	<lq [<0,00057]<="" th=""><th>ng ITEQ / Nm³ sec</th></lq>	ng ITEQ / Nm ³ sec
	Concentration .	<lq [<0,00037]<="" th=""><th>ng iieQ/inm sec</th></lq>	ng iieQ/inm sec
PCDD / PCDF	Masse :	0.0465 ± 0.0069	ng ITEQ
	Concentration :	$0,00680 \pm 0,00104$	-
			ng neQ/Nm sec
	PCDD	27,4%	
	PCDF	72,6%	

(La concentration à O2ref est ramenée à une teneur en de 11,0 d'oxygène sec) (La teneur mesurée en oxygène du conduit est de 11,7 %)


<LQ [<0,0133] ng ITEQ / Nm³ sec

<LQ [<0,00073] ng ITEQ / Nm 3 sec



Concentration à O₂ de référence :

Concentration blanc à O2 de référence :

Annexe 2 : Expression des résultats

• METHODES AUTOMATIQUES (paramètres concernés : O2, CO2, CO, NOx, COV)

En l'absence d'information sur les normes, les règles à appliquer pour l'expression des résultats sont précisées ci-dessous :

Signe inférieur "<" :

Le signe inférieur "<" devant une valeur indique que :

o la lecture analytique est inférieure au seuil de quantification (LQ)

ou

o l'incertitude sur le résultat est supérieure à celui-ci.

- Mesures triplées : Moyenne des 3 déterminations

La moyenne des 3 déterminations est la moyenne algébrique des 3 valeurs absolues mesurées sur le terrain.

Pour les résultats inférieurs au seuil de quantification (< LQ), la valeur de LQ/2 est prise pour réaliser la moyenne

Cas particuliers:

Si au moins une des déterminations est précédée d'un signe "<" et a une LQ/2 supérieure ou égale aux autres déterminations, la moyenne algébrique des 3 valeurs sera précédée du signe "<".

Exemple:

	1 ^{er} cas	2 nd cas	3 ^{ème} cas	4 ^{ème} cas
1 ^{ère} détermination	3	<3	<2	<2
2 ^{nde} détermination	<8	<2	<2	<2
3 ^{ème} détermination	2	1	1	<2
MOYENNE	<3	<1	<1	<1

Si au moins une des déterminations est précédée d'un signe "<" et a une LQ/2 inférieure ou égale aux autres déterminations, la moyenne algébrique des 3 valeurs ne sera pas précédée du signe "<".

Exemple :

	Valeur retenue
1 ^{ère} détermination	7,2
2 ^{nde} détermination	< 2,1
3 ^{ème} détermination	< 1,8
MOYENNE	3,1

METHODES MANUELLES (paramètres concernés : poussières, HCl, SO2, HF, NH3, Metaux lourds, Mercure, PCDD/F, HAP...)

En application de la révision 2 du LAB REF 22, les règles d'expression des résultats à partir des résultats d'analyses sont les suivantes :

- Résultat d'analyse < Limite de Détection (LQ/3), la valeur retenue est : 0
- Limite de Détection (LQ/3) < Résultat d'analyse < Limite de quantification : la valeur retenue est LQ/2
- Dans le cas où le Blanc de site est supérieur à la valeur mesurée, le résultat est égal au blanc de site.

Métaux lourds :

Chaque métal est analysé séparément et répertorié dans 4 groupes conformément aux arrêtés ministériels.

- Composés gazeux et particulaires

Pour les fluorures, métaux et mercure, la fraction gazeuse est mesurée séparément de la fraction particulaire. Seule la concentration globale (gazeuse + particulaire) est indiquée dans les tableaux de résultat, conformément aux normes en vigueur.

- Conformité du rendement d'absorption

Pour le calcul du rendement d'absorption demandant de sommer les concentrations, il faut considérer :

- o Une concentration nulle pour le compartiment où la concentration est inférieure à LQ/3
- o Une concentration égale à LQ/2 si la valeur mesurée est comprise entre LQ/3 et LQ.

Il est admis que dans le cas où la concentration mesurée est faible et que le premier critère de rendement ne peut être atteint, l'essai est validé si la concentration dans le dernier barboteur est inférieure à la LQ.

Si la concentration globale mesurée est inférieure à 10% VLE, il est admis que le critère de rendement peut ne pas être atteint sans pour autant qu'il y ait un impact sur le résultat.

Annexe 3 : Plan de mesurage

PLAN DE MESURAGE

Conformément au guide GAX 43-551, le plan d'échantillonnage pour les paramètres soumis aux agréments a été réalisé selon les méthodes décrites dans le tableau suivant :

Type de polluants	Plan d'échantillonnage
Polluants sous forme particulaire ou vésiculaire : Poussières, métaux, HF, PCDD/F, HAP	Norme NF EN 13284-1
Polluants sous forme gazeuse : CO, NOx, SO2, HCl, NH3, COV	Norme NF EN 15259 Dans le cas d'un seul axe disponible, mesurage en un seul point

DUREE DE PRELEVEMENT EN FONCTION DU POLLUANT MESURE (Arrêté du 11 mars 2010)

Type de polluants	Durée de prélèvement
Polluant à fraction particulaire Polluant à fractions particulaire et gazeuse (sauf PCDD/F)	Minimum 1h (1/2 h par axe de mesure) et LQ < 10 % VLE
Polluant à fraction gazeuse uniquement	Minimum ½ h

Annexe 4 : Critères de conformité des blancs de prélèvement

Métaux lourds:

NF EN 14385 §8.5 : le blanc doit être <10%Valeur Limite d'Emission (VLE)

Ammoniac:

NFX 43-303 §6.2.4: le blanc doit être <10%VLE

Fluorure d'hydrogène (HF) :

NFX 43-304 §6.2.4 : le blanc doit être <10%VLE ou toute valeur limite acceptée

Dioxines et furannes (PCDD/F):

NF EN 1948-1: §7.3 : le blanc doit être <10%VLE.

Mercure (Hg):

NF EN 13-211: pas d'exigence

Chlorure d'hydrogène (HCI):

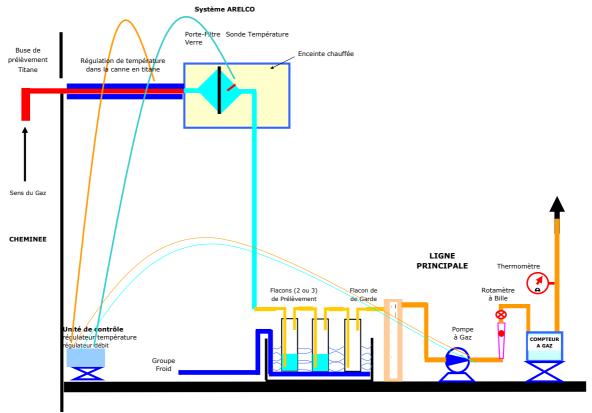
NF EN 1911 §5.3.3.2:

Le blanc doit être < 10% de la VLE

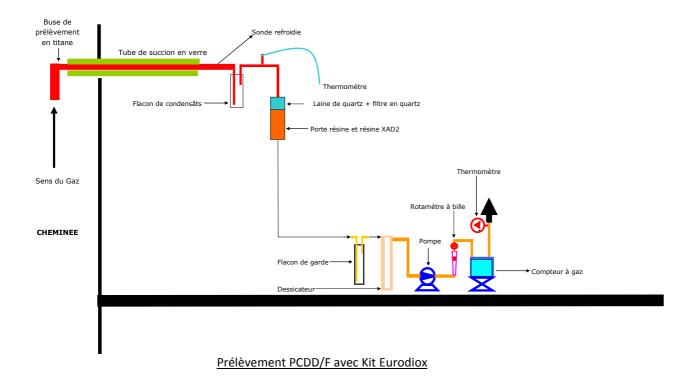
Poussières :

NF EN 13284-1 §10.6 : le blanc de mesure doit être <10% VLE journalière. Tout résultat inférieur au blanc n'est pas valide

NFX 44052: §4: le blanc doit être < 5 mg/m³


Dioxyde de soufre (SO₂):

NF EN 14791 §7.5 : le blanc doit être <10%VLE.



Annexe 5 : Schémas des dispositifs de prélèvement

Prélèvements de polluants particulaires et gazeux (hors PCDD/PCDF et HAP)

Chaîne de prélèvement ARELCO® Isostack (filtration hors conduit)

Annexe 6 : Rapports d'analyses des laboratoires sous-traitants

Page 1/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

IRH INGENIEUR CONSEIL Monsieur Maxime COUTON agence ouest 8 rue olivier de serres 49070 BEAUCOUZE

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

Coordinateur de projet client : Kevin Gomarin / KevinGomarin@eurofins.com / +33 3 88 71 78 41

Page 2/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

 Dossier N°: 16E040955
 Version du : 11/07/2016

 N° de rapport d'analyse : AR-16-LK-048422-02
 Date de réception : 26/05/2016

 Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée Référence Dossier : Affaire : DCD16007AZIMCN/25-05-16

N° Ech	Matrice		Référence échantillon					
001	Air Emission	(AIE)	BC1 (Blanc)					
002	Air Emission	(AIE)	RC1					
003	Air Emission	(AIE)	106489 (Blanc)					
004	Air Emission	(AIE)	106434					
005	Air Emission	(AIE)	RCF1 (Blanc)					
006	Air Emission	(AIE)	BF (Blanc)					
007	Air Emission	(AIE)	F1B1					
800	Air Emission	(AIE)	F1B2					
009	Air Emission	(AIE)	BS (Blanc)					
010	Air Emission	(AIE)	S1B1					
011	Air Emission	(AIE)	S1B2					
012	Air Emission	(AIE)	S2					
013	Air Emission	(AIE)	S3					
014	Air Emission	(AIE)	BCI (Blanc)					
015	Air Emission	(AIE)	CI1B1					
016	Air Emission	(AIE)	Cl1B2					
017	Air Emission	(AIE)	CI2					
018	Air Emission	(AIE)	CI3					
019	Air Emission	(AIE)	BNH (Blanc)					
020	Air Emission	(AIE)	NH1B1					
021	Air Emission	(AIE)	NH1B2					
022	Air Emission	(AIE)	NH2					
023	Air Emission	(AIE)	NH3					
024	Air Emission	(AIE)	BRM (Blanc)					
025	Air Emission	(AIE)	RC2					
026	Air Emission	(AIE)	106595 (Blanc)					
027	Air Emission	(AIE)	105512					
028	Air Emission	(AIE)	RC3					
029	Air Emission	(AIE)	106243					
030	Air Emission	(AIE)	RCF2 (Blanc)					
031	Air Emission	(AIE)	RCF3 (Blanc)					
032	Air Emission	(AIE)	BM (Blanc)					
033	Air Emission	(AIE)	M2 B1+B2					
034	Air Emission	(AIE)	M2 B3					
035	Air Emission	(AIE)	BHg (Blanc)					
036	Air Emission	(AIE)	Hg3 B1+B2					
037	Air Emission	(AIE)	Hg3 B3					
038	Air Emission	(AIE)	C#59544+C#59540 (Blanc)					
039	Air Emission	(AIE)	C#57349+C#58683+Cond1+Cond2					

Page 3/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon Référence client :		ВС	001 1 (Blanc)		002 RC1		003 106489 (Blanc)		004 106434	RC	005 F1 (Blanc)	006 BF (Blanc
Matrice :			AIE		AIE		AIE		AIE		AIE	AIE
Date de prélèvement :		24	/05/2016	2	24/05/2016	2	4/05/2016	- 2	24/05/2016	2	4/05/2016	24/05/2016
Date de début d'analyse :		26	/05/2016	2	26/05/2016	2	7/05/2016		27/05/2016	20	6/05/2016	26/05/2016
	1	Prép	aration	ı P	hysico-	Chi	mique					
LSG05 : Volume	ml							П				129
XXSJ7 : Volume de rinçage	ml		37.9		25.4						27.6	
		N	lesures	g	ravimét	riqu	ıes					
LSL49 : Post-pesée des filtres				ľ				г				
Masse de poussières non corrigée	mg					*	0.69	*	0.52			
Correction appliquée	mg					*	-0.38	*	-0.38			
Incertitude	mg					*	0.13	w	0.13			
Masse de poussières après correction	mg					*	1.08	*	0.90			
SL4A : Quantité de poussières sur rinç	age (pesée)										
Masse de poussières non corrigée	mg	*	-0.19	*	0.57							
Correction appliquée	mg	*	-0.38	*	-0.38							
Incertitude	mg	*	0.18	*	0.18							
Masse de poussières après correction	mg	*	ND, <0.89	*	0.95							
Masse poussières corrigée sur volume total	mg	*	<0.89	*	0.95							
			Indice	S	de pollu	tior	1					
.S24R : Dosage de l'HF particulaire sur filtre après fusion alcaline .SH74 : Acide fluorhydrique (HF) / Fluoi	µg/Filtre					*	D, <26.3	*	D, <26.3			
parbotage	th oo our											
Fluorures	mg F/I											* <0.1
Acide fluorhydrique (HF)	µg/flacon											* ND, <14
S26L : Dosage de l'HF particulaire sur rinçage après fusion alcaline	µg/flacon	*	D, <26.3	*	D, <26.3					*	D, <26.3	

Page 4/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		- E	007 F1B1 AIE 4/05/2016 8/05/2016		008 F1B2 AIE 24/05/2016 26/05/2016	2	009 BS (Blanc) AIE 24/05/2016 26/05/2016		010 S1B1 AIE 4/05/2016 6/05/2016		011 \$1B2 AIE 24/05/2016 26/05/2016		012 S2 AIE 4/05/2016 6/05/2016
	1	Prép	paratio	n P	hysico-	Ch	imique						
LSG05 : Volume	ml		139		93	T	150	П	138		89		235
			Indice	es (de pollu	tio	n						
LSG01 : Dioxyde de soufre (SO2) s i	ur barbotage	7				7							
Sulfate soluble	mg SO4/I					*	<0.20	*	101	*	<0.20	*	97.0
Dioxyde de soufre (SO2) total	µg/flacon					*	ND, <20.0	*	9330	*	D, <11.9	*	15200
SH74 : Acide fluorhydrique (HF) / parbotage Fluorires	Fluorures sur	*	0.74		<0.1								
Acide fluorhydrigue (HF)	ug/flacon	*	110	*	ND <9.8								

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		013 \$3 AIE 24/05/2016		014 BCI (Blanc) AIE 24/05/2016	24	015 CI1B1 AIE /05/2016		016 CI1B2 AIE 24/05/2016		017 CI2 AIE 4/05/2016		018 CI3 AIE 4/05/2016
Date de debut d'arraiyse .		26/05/2016 éparatior	1.00	26/05/2016 hysico-(- CT-10	/05/2016		26/05/2016	21	3/05/2016	20	5/05/2016
		cparation		ny siec (2111111	ilique						
LSG05 : Volume ml		256		171		158		72		192		209
		Indice	es (de pollut	ion							
LSH72 : Acide chlorhydrique (HCI) /Chlorures s barbotage	sur		Ì				Г				Г	
Chlorures (CI) solubles mg C	NI)		*	<0.20	*	2.04	*	<0.20	*	2.54	*	7.15
Acide chlorhydrique (HCI) µg/flac	con		*	ND, <35.1	*	331	*	ND, <14.8	*	501	*	1540
LSG01 : Dioxyde de soufre (SO2) sur barbotag	е											
Sulfate soluble mg SC	04/1 *	94.6										
Dioxyde de soufre (SO2) total µg/flac	con *	16100										

Page 6/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon Référence client : Matrice : Date de prélèvement : Date de début d'analyse :		2	019 NH (Blanc) AIE 4/05/2016 6/05/2016		020 NH1B1 AIE 24/05/2016 26/05/2016		021 NH1B2 AIE 4/05/2016 6/05/2016		022 NH2 AIE 4/05/2016 6/05/2016		023 NH3 AIE 4/05/2016 6/05/2016	2	024 RM (Blanc) AIE 24/05/2016 26/05/2016
0		Pré	paration	P	hysico-C	hi	mique						
XXSJ8 : Volume de rinçage	ml			П				т				Т	64.1
LSG05 : Volume	ml		170		98		78		219		223		
			Indice	s (de pollut	ior	1						
LSRAP: Ammonium (NH4) / Ammonia barbotage Ammonium Ammonium Ammoniac (NH3)	mg/l	*	<0.05 D, <8.49 D, <8.02	*	8.07 790 746	*	0.88 68.3 64.5	*	19.8 4340 4100	*	17.5 3910 3690		
				Me	étaux				10.4124				
LSOPO: Minéralisation de rinçage HF/HNO3 LSOMW: Antimoine (Sb) (Rinçage) LSOMY: Arsenic (As) (Rinçage) LSON3: Cadmium (Cd) (Rinçage) LSON4: Chrome (Cr) (Rinçage) LSON5: Cobalt (Co) (Rinçage) LSON6: Cuivre (Cu) (Rinçage) LSON9: Manganèse (Mn) (Rinçage) LSONB: Nickel (Ni) (Rinçage) LSONC: Plomb (Pb) (Rinçage) LSONG: Thallium (Tl) (Rinçage) LSONJ: Vanadium (V) (Rinçage)	µg/flacon											* * * * * * * * * * * * * * * * * * * *	Fait ND, <0.30 ND, <0.30 ND, <0.12 ND, <0.30 ND, <0.12 ND, <1.2 ND, <0.30 ND, <0.12 ND, <0.30
Mercure (Hg) (Killçage) Mercure (Hg)	μg/l μg/flacon											*	<0.50 ND, <0.03

Page 7/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

		RC2		106595		ADECAD		RC3		106243	DOF	
				(Blanc)		105512		KC3		100243	RCF	2 (Bland
		AIE		AIE		AIE		AIE		AIE		AIE
	2	24/05/2016	1	24/05/2016	2	24/05/2016	1	24/05/2016	2	4/05/2016	24/	05/2016
	2	26/05/2016		27/05/2016	2	27/05/2016	1	26/05/2016	2	7/05/2016	26/	05/2016
F	Pré	paration	P	hysico-C	Chi	imique						
ml							г	39.0				
ml		31.5										42.0
		Mesures	g	ravimétr	iq	ues						
							П					
mg			*	0.79	*	1.29			*	1.56		
mg			*	0.28	*	0.38			*	1.01		
mg			W	0.13	*	0.13			*	0.13		
mg			*	D, <0.65	*	0.91			*	D, <0.65		
çage (pesée)											
mg	*	0.40					*	-0.27				
mg	*	-0.38					*	-0.40				
mg	*	0.18					*	0.18				
mg	*	D, <0.89					*	ND, <0.89				
mg	*	<0.89					*	<1.18				
			M	étaux								
	Т		*	Fait	*	Fait	Г		*	Fait		
µg/Filtre			*	ND, <0.25	*	ND, <0.25						
μg/Filtre			*	ND, <0.25	*	ND, <0.25						
µg/Filtre			*	ND, <0.10	*	ND, <0.10						
25.00 CO (20.00 CO)			*	1.06	*	2.45						
COMPANY OF THE PARTY OF THE PAR			*		*							
EAL-SALVACUACITY			w	PERCENT CONTRACTOR	*							
				11391148 5405000111	*							
				1000000								
To a street war on a st					200							
22/19/3			8	moved engages								
Marie						4						
					w	0.14						
µg/Filtre			*	ND, <0.100					*	D, <0.100		
	*	Fait									*	Fait
µg/flacon	*	ND, <0.25									* N	D, <0.25
µg/flacon	*	D, <0.25									* N	D, <0.25
µg/flacon	*	ND, <0.10									* N	D, <0.10
µg/flacon	*	0.35									* N	D, <0.25
1000	*	ND. <0.10										D. <0.10
APPROXIMENTAL PROPERTY.	*											D, <1.00
	mg m	mg m	Préparation ml	## Préparation P ml ml 31.5 Mesures g	Préparation Physico-C	Préparation Physico-Chi	Préparation Physico-Chimique ml ml 31.5	Préparation Physico-Chimique ml ml 31.5 mesures gravimétriques 1.29 mg mg 0.28 0.38 mg mg 0.13 0.13 mg 0.38 mg 0.38 mg 0.38 mg 0.18 mg 0.40, mg 0.38 mg 0.40, mg 0.38 mg 0.40, mg 0.40, mg 0.48	Préparation Physico-Chimique 39.0 39.	Préparation Physico-Chimique Marcolong Mesures gravimétriques	Préparation Physico-Chimique 39.0 39.0 39.0	Préparation Physico-Chimique 39.0 39.0 39.0

Eurofins Analyses pour l'Environnement - Site de Saverne 5, rue d'Otterswiller - 67700 Saverne Tél 03 88 911 911 - fax 03 88 916 531 - site web : www.eurofins.ft/env SAS au capital de 1 632 800 € - APE 7120B - RCS SAVERNE 422 998 971 ACCREDITATION N° 1- 1488 Site de saverne Portée disponible sur www.cofrac.fr

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon Référence client : Matrice : Date de prélèvement :		2	025 RC2 AIE 4/05/2016	026 106595 (Blanc) AIE 24/05/2016	027 105512 AIE 24/05/2016	028 RC3 AIE 24/05/2016	029 106243 AIE 24/05/2016	030 RCF2 (Bland AIE 24/05/2016
Date de début d'analyse :		2	6/05/2016	27/05/2016	27/05/2016	26/05/2016	27/05/2016	26/05/2016
				Métaux				
LS0N9 : Manganèse (Mn) (Rinçage)	µg/flacon	*	0.46					* ND, <0.10
LSONB : Nickel (Ni) (Rinçage)	µg/flacon	*	D, <1.00					* ND, <1.00
LSONC : Plomb (Pb) (Rinçage)	µg/flacon	*	D, <0.25					* ND, <0.25
LS0NG : Thallium (TI) (Rinçage)	µg/flacon	*	0.17					* ND, <0.10
LSONJ : Vanadium (V) (Rinçage) LSOJI : Mercure (Hg) (Rinçage) Mercure (Hg)	μg/flacon μg/l	*	D, <0.10			* <0.50		* ND, <0.10
Mercure	µg/flacon					* ND, <0.02		

Page 9/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Version du : 11/07/2016 Dossier N°: 16E040955 Date de réception : 26/05/2016 N° de rapport d'analyse : AR-16-LK-048422-02 Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon		031	032	033	034	035	036
Référence client :		RCF3 (Blanc)	BM (Blanc)	M2 B1+B2	M2 B3	BHg (Blanc)	Hg3 B1+B2
Matrice :		AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :		24/05/2016	24/05/2016	24/05/2016	24/05/2016	24/05/2016	24/05/2016
Date de début d'analyse :		26/05/2016	26/05/2016	26/05/2016	26/05/2016	26/05/2016	26/05/2016
3.000 (1.	F	Préparation	Physico-C	Chimique		M.C. 92401 (MIS 1974) (CO. 900)	7 (3000). 1131/09-00331112-10
VVO IS Valence de since de	ml	44.6	. 10,5100			21	
KXSJ8 : Volume de rinçage LSG05 : Volume	ml	44.0	162	223	101	204	263
Sous : Volume	110	Magures	CP/PN/	977,000.00	10.1	204	203
			gravimétr	iques			
SL4A: Quantité de poussières sur rinç	(CT) (CT)						
Masse de poussières non corrigée	mg	* 0.03					
Correction appliquée	mg	* -0.37					
Incertitude	mg	* 0.18					
Masse de poussières après correction	mg	* D, <0.89					
Masse poussières corrigée sur volume total	mg	* <1.11					
			Métaux				
.SG78 : Antimoine (Sb) (Barbotage)							
Antimoine (Sb)	µg/l		* <0.200	* <0.200	* <0.200		
Antimoine (Sb)	µg/flacon		* ND, <0.032	* ND, <0.045	* ND, <0.02		
.SG80 : Arsenic (As) (Barbotage)							
Arsenic (As)	µg/l		* <0.200	* <0.200	* <0.200		
Arsenic (As)	µg/flacon		* ND, <0.032	* ND, <0.045	* ND, <0.02		
.SG85 : Cadmium (Cd) (Barbotage)							
Cadmium (Cd)	µg/l		* <0.200	* <0.200	* <0.200		
Cadmium (Cd)	µg/flacon		* ND, <0.032	* ND, <0.045	* ND, <0.02		
SG86: Chrome (Cr) (Barbotage)	026		W 0 1200		1 17100		
Chrome (Cr)	μg/l		* <0.500	* 1.27	* 0.644		
Chrome (Cr)	µg/flacon		* ND, <0.081	* 0.284	* 0.065		
SG87 : Cobalt (Co) (Barbotage)	0.000		* <0.200		* <0.200		
Cobalt (Co)	μg/l		-0.200	* <0.200			
Cobalt (Co)	µg/flacon		* ND, <0.032	* ND, <0.045	* D, <0.02		
.SG88 : Cuivre (Cu) (Barbotage)	1012020W-1		* <0.500	* 0.765	* <0.500		
Cuivre (Cu) Cuivre (Cu)	μg/l μg/flacon		* <0.500 * ND, <0.081	* 0.17	* D, <0.05		
5-19-MINISTER MARKET 156	руласоп		ND, <0.001	0.17	D, <0.05		
LSG91 : Manganèse (Mn) (Barbotage)			* <0.500	* <0.500	* <0.500		
Manganèse (Mn) Manganèse (Mn)	μg/l μg/flacon		* ND, <0.081	* D, <0.111	* D, <0.05		
reconstitution of the American contract of the	µултасоп		140, ~0.061	D, ~0.111	D, ~0.05		
.SG93 : Nickel (Ni) (Barbotage) Nickel (Ni)	μg/l		* <2.00	* <2.00	* <2.00		
Nickel (Ni)	μg/flacon		* ND, <0.324	* D, <0.445	* ND, <0.202		
.SG94 : Plomb (Pb) (Barbotage)	Mg: Hacon		110, 30,024	2, 00.770	110, 10.202		
Plomb (Pb)	μg/l		* <0.500	* <0.500	* <0.500		
Plomb (Pb)	μg/flacon		* ND, <0.081	* D, <0.111	* D, <0.05		
SG98 : Thallium (TI) (Barbotage)	pgi nacori		140, 40,001	5, 30.111	5, 10.00		
: 10 전 10 10 10 10 10 10 10 10 10 10 10 10 10	uall		* <0.500	* <0.500	* <0.500		
Thallium (TI)	µg/l		* <0.500	* <0.500	* <0.500		

Page 10/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon		031	032	033	034	035	036
Référence client :		RCF3 (Blanc)	BM (Blanc)	M2 B1+B2	M2 B3	BHg (Blanc)	Hg3 B1+B2
Matrice :		AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :		24/05/2016	24/05/2016	24/05/2016	24/05/2016	24/05/2016	24/05/2016
Date de début d'analyse :		26/05/2016	26/05/2016	26/05/2016	26/05/2016	26/05/2016	26/05/2016
			Métaux				
.SG98 : Thallium (TI) (Barbotage)							
Thallium (TI)	µg/flacon		* ND, <0.081	* ND, <0.111	* ND, <0.05		
.SH02 : Vanadium (V) (Barbotage)							
Vanadium	µg/l		* <0.200	* <0.200	* <0.200		
Vanadium (V)	µg/flacon		* ND, <0.032	* ND, <0.045	* ND, <0.02		
S17X: Mercure (Hg) (Barbotage perm	anganate)						
Volume corrigé	ml					191	246
Mercure (Hg)	µg/l					* <1.00	* 23.6
Mercure (Hg)	µg/flacon					* ND, <0.19	* 5.81
SOJI : Mercure (Hg) (Rinçage)							
Mercure (Hg)	µg/l	* <0.50					
Mercure	µg/flacon	* ND, <0.02					

Page 11/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

LSG05 : Volume

Mercure (Hg)

 Matrice :
 AIE
 AIE
 AIE

 Date de prélèvement :
 24/05/2016
 24/05/2016
 24/05/2016

 Date de début d'analyse :
 26/05/2016
 26/05/2016
 26/05/2016

µg/flacon

Préparation Physico-Chimique

* ND, <0.10

Sous-traitance | Eurofins GfA Lab Service Gmbh (Hamburg)

CY107: Dioxines PCDD/F ~17 congénères -2,3,7,8-TCDD ng/échantillon(* ND. < 0.0022 * 0.00926 s) ng/echantillon(1,2,3,7,8-PeCDD * ND, <0.0030 * 0.00431 ng/échantillon(* ND, <0.0060 * D, <0.0060 1.2.3.4.7.8-HxCDD s) ng/échantillon(* ND, <0.0060 * D, <0.0060 1,2,3,6,7,8-HxCDD ng/echantillon(* ND, <0.0060 * D, <0.0060 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD ng/echantillon(* 0.0234 * 0.0358 ng/échantillon(* 0.0657 0.0747 * ND, <0.0040 * ng/echantillon(2.3.7.8-TCDF 0.175 s) ng/echantillon(1,2,3,7,8-PeCDF * ND, <0.0055 * ng/echantillon(* ND, <0.0055 * 2,3,4,7,8-PeCDF 0.0218 s) ng/échantillon(ng/échantillon(* ND, <0.0050 * 0.0103 1,2,3,6,7,8-HxCDF s) ng/echantillon(* ND, <0.0050 * ND, <0.00540 1,2,3,7,8,9-HxCDF s) ng/echantillon(* D, <0.0050 * 2,3,4,6,7,8-HxCDF 0.0105 ng/échantillon(1,2,3,4,6,7,8-HpCDF * 0.0145 0.0452 ng/échantillon(1,2,3,4,7,8,9-HpCDF * D, <0.0047 ng/echantillon(D, < 0.040 0.251 s) Dioxines et Furanes TEQ (OMS 1998) avec ng/échantillon(0.0129 Dioxines et Furanes TEQ (OMS 1998) sans ng/échantillon(0.000386 0.0474

Page 12/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyée

Référence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

N° Echantillon	037	038	039
Référence client :	Hg3 B3		C#57349+C#5 8683+Cond1+
Matrice :	AIE	AIE	Cond2 AIE
Date de prélèvement :	24/05/2016	24/05/2016	24/05/2016
Date de début d'analyse :	26/05/2016	26/05/2016	26/05/2016

Sous-traitance | Eurofins GfA Lab Service Gmbh (Hamburg)

CY107: Dioxines PCDD/F ~17 congér	nères -				
EN1948					
Somme des dioxines (OMS 2005 PCDD/F	ng/échantillon(*	0.0117	*	0.0448
TEQ) avec LQ	s)				
Somme des dioxines (OMS 2005 PCDD/F	ng/échantillon(*	0.000399	*	0.0425
TEQ) sans LQ	s)				
Tx de réapparition 13C12-12378-PentaCE	OF %	*	75.2	W.	48.5
Tx de réapparition 13C12-123789-HexaCI	DF %	*	96.4	*	87.5
Tx de réapparition 13C12-1234789-HptCD)F %	*	114	*	98.9
I-TEQ (NATO/CCMS) avec LQ	ng/échantillon(s)	*	0.0115	*	0.0479
I-TEQ (NATO/CCMS)) sans LQ	ng/échantillon(s)	*	0.000445	*	0.0455

Observations	N° Ech	Réf client
Le support a été ré-étuvé et repesé, le résultat a été confirmé	(003)	106489 (Blanc)
L'information relative au seuil de détection d'un parametre n'est pas couverte par l'accréditation Cofrac.	(001) (002) (003) (004) (005) (006) (008) (009) (011) (014) (016) (019) (024) (025) (026) (027) (028) (029) (030) (031) (032) (033) (034) (035) (037)	BC1 (Blanc) / RC1 / 106489 (Blanc) / 106434 / RCF1 (Blanc) / BF (Blanc) / F1B2 / BS (Blanc) / S1B2 / BCI (Blanc) / C11B2 / BNH (Blanc) / BRM (Blanc) / RC2 / 106595 (Blanc) / 105512, RC3 / 106243 / RCF2 (Blanc) / RCF3 (Blanc) / BM (Blanc) / M2 B1+B2 / M2 B3 / BHg (Blanc) / Hg3 B3 /
Mercure gazeux : La concentration massique en µg/échantillon est calculée en tenant compte de la masse volumique de la solution d'acide de permanganate de potassium définie dans la norme EN 13211. Dans le cas où vous n'auriez pas utilisé la solution fournie par nos soins ou suivi un protocole différent de celui prévu dans la norme 13211, la concentration en µg/échantillon indiquée est incorrecte.	(035) (036) (037)	BHg (Blane) / Hg3 B1+B2 / Hg3 B3 /

Page 13/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

RAPPORT D'ANALYSE

Dossier N°: 16E040955Version du : 11/07/2016N° de rapport d'analyse : AR-16-LK-048422-02Date de réception : 26/05/2016Annule et remplace la version AR-16-LK-048422-01, qui doit etre détruite ou nous être renvoyéeRéférence Dossier : Affaire : DCD16007AZ/MCN/25-05-16

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 18 page(s). Le présent rapport ne concerne que les objets soumis à l'essai.

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

D : détecté / ND : non détecté

Les résultats précédés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Laboratoire agréé par le ministre chargé de l'environnement - se reporter à la liste des laboratoires sur le site internet de gestion des agrèments du ministère chargé de l'environnement : http://www.labeau.ecologie.gouv.fr

Laboratoire agréé pour la réalisation des prélèvements et des analyses terrains et/ou des analyses des paramètres du contrôle sanitaire des eaux – portée détaillée de l'agrément disponible sur demande.

Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour lesquels l'agrément a été délivré sur : www.eurofins.fr ou disponible sur demande.

Pour les résultats issus d'une sous-traitance, les rapports émis par des laboratoires accrédités sont disponibles sur demande.

Jeffy 1

Kevin Gomarin Coordinateur de Projets Clients

ACCREDITATION
N° 1- 1488
Site de saverne
Portée disponible sur
www.cofrac.fr

Page 14/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

N° de rapport d'analyse :AR-16-LK-048422-02 Dossier N°: 16E040955

Emetteur: Commande EOL: Nom projet : Référence commande :

Air Emission

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Incert.	Prestation réalisée sur le site de :
CY107	Dioxines PCDD/F ~17 congénères - EN1948	GC/HRMS - EN 1948	i i	Î		Prestation soustraitée à Eurofins GfA Lab Service GmbH
	2,3,7,8-TCDD			ng/m³	30% (A)	Lab del vide dilibi i
	1,2,3,7,8-PeCDD			ng/m³	30% (A)	
	1,2,3,4,7,8-HxCDD			ng/m³	30% (A)	
	1,2,3,6,7,8-HxCDD			ng/m³	30% (A)	
	1,2,3,7,8,9-HxCDD			ng/m³	30% (A)	
	1,2,3,4,6,7,8-HpCDD			ng/m³	30% (A)	
	OCDD			ng/m³	30% (A)	
	2,3,7,8-TCDF			ng/m³	30% (A)	
	1,2,3,7,8-PeCDF			ng/m³	30% (A)	
	2,3,4,7,8-PeCDF			ng/m³	30% (A)	
	1,2,3,4,7,8-HxCDF			ng/m³	30% (A)	
	1,2,3,6,7,8-HxCDF			ng/m³	30% (A)	
	1,2,3,7,8,9-HxCDF			ng/m³	30% (A)	
	2,3,4,6,7,8-HxCDF			ng/m³	30% (A)	
	1,2,3,4,6,7,8-HpCDF			ng/m³	30% (A)	
	1,2,3,4,7,8,9-HpCDF			ng/m³	30% (A)	
	OCDF			ng/m³	30% (A)	
	Dioxines et Furanes TEQ (OMS 1998)			ng/m³	20% (A)	
	avec LQ Dioxines et Furanes TEQ (OMS 1998)			ng/m³	20% (A)	
	sans LQ			27	8.5	
	Somme des dioxines (OMS 2005 PCDD/F- TEQ) avec LQ			ng/m³	20% (A)	
	Somme des dioxines (OMS 2005 PCDD/F- TEQ) sans LQ			ng/m³	20% (A)	
	Tx de réapparition			%		
	13C12-12378-PentaCDF Tx de réapparition			%		
	13C12-123789-HexaCDF Tx de réapparition			%		
	13C12-1234789-HptCDF FTEQ (NATO/CCMS) avec LQ				20% (A)	
	FTEQ (NATO/CCMS) avec EQ FTEQ (NATO/CCMS)) sans EQ			ng/m³	20% (A) 20% (A)	
20				ng/m³	20% (A)	pp to the participation of the control of the contr
LS0JI	Mercure (Hg) (Rinçage)	SFA / vapeurs froides (CV-AAS) - Méthode interne adaptée de NF EN 13211				Eurofins Analyse pour l'Environnement France
	Mercure (Hg)	A CONTROL OF THE CONT	0.5	µg/l	15% (B)	-0.1213 (1.00MID)
	Mercure			µg/flacon		
LSOMW	Antimoine (Sb) (Rinçage)	ICP/MS - NF EN 14385	0.25	µg/flacon	20% (B)	İ
LS0MY	Arsenic (As) (Rinçage)		0.25	µg/flacon	25% (B)	
LS0N3	Cadmium (Cd) (Rinçage)		0.1	µg/flacon	30% (B)	
LSON4 LSON5	Chrome (Cr) (Rinçage)		0.25	µg/flacon	15% (B)	
LSON6	Cobalt (Co) (Rinçage) Cuivre (Cu) (Rinçage)		0.1	μg/flacon μg/flacon	20% (B) 20% (B)	ł
LSON9	Manganése (Mn) (Rinçage)		0.1	µg/flacon	30% (B)	+
LSONB	Nickel (Ni) (Rinçage)		1	µg/flacon	25% (B)	ł

Page 15/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

Dossier N°: 16E040955 N° de rapport d'analyse :AR-16-LK-048422-02

Emetteur : Commande EOL :

Nom projet : Référence commande :

		T 2252 81 1	1000000	T	_	a a
Code	Analyse	Principe et référence de la méthode	LQI	Unité	Incert.	Prestation réalisée sur le site de :
LSONC	Plomb (Pb) (Rinçage)		0.25	µg/flacon	15% (B)	Sko do .
LSONG	Thallium (TI) (Rinçage)	1	0.1	µg/flacon	10% (B)	
LSONJ	Vanadium (V) (Rinçage)	==	0.1	µg/flacon	10% (B)	
LS0P0	Minéralisation de rinçage HF/HNO3	Méthode interne		i		
LS17X	Mercure (Hg) (Barbotage permanganate)	SFA / vapeurs froides (CV-AAS) - Méthode interne adaptée de NF EN 13211				
	Volume corrigé			ml		
	Mercure (Hg)		1	μg/l	30% (B)	
	Mercure (Hg)			μg/flacon		
LS24R	Dosage de l'HF particulaire sur filtre après fusion alcaline	Dosage par ionométrie - NF X 43-304	26.3	μg/Filtre	15% (B)	
LS26L	Dosage de l'HF particulaire sur rinçage après fusion alcaline		26.3	µg/flacon	15% (B)	
LSB03	Minéralisation HF/HNO3	XP X 43-051/NF EN 14385 - NF EN 14902				
LSG01	Dioxyde de soufre (SO2) sur barbotage Sulfate soluble Dioxyde de soufre (SO2) total	Chromatographie ionique - NF ISO 11632 / NF EN 14791	0.2	mg SO4/l µg/flacon	8% (A)	
LSG05	Volume	Gravimétrie - Méthode interne		mi	-	i.
LSG78	Antimoine (Sb) (Barbotage) Antimoine (Sb)	ICP/MS - NF EN 14385	0.2	µgЛ	25% (B)	
	Antimoine (Sb)			µg/flacon		
LSG80	Arsenic (As) (Barbotage) Arsenic (As)		0.2	μg/l	25% (B)	
	Arsenic (As)			µg/flacon		
LSG85	Cadmium (Cd) (Barbotage) Cadmium (Cd)		0.2	нау	20% (B)	
	Cadmium (Cd)			µg/flacon		v
LSG86	Chrome (Cr) (Barbotage) Chrome (Cr)		0.5	μgЛ	10% (B)	
	Chrome (Cr)			µg/flacon		
LSG87	Cobalt (Co) (Barbotage) Cobalt (Co)		0.2	µg/l	15% (B)	
	Cobat (Co)	_		µg/flacon		:
LSG88	Cuivre (Cu) (Barbotage) Cuivre (Cu)		0.5	μg/Ι	25% (B)	
	Cuivre (Cu)			µg/flacon		
LSG91	Manganèse (Mn) (Barbotage) Manganèse (Mn)	-	0.5	µд//	25% (B)	
	Manganèse (Mn)			µg/flacon	13 31	
LSG93	Nickel (Ni) (Barbotage) Nickel (Ni)		2	µgЛ	30% (B)	
	Nickel (Ni)			µg/flacon		
SG94	Plomb (Pb) (Barbotage)	I		1	1	

Page 16/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

N° de rapport d'analyse :AR-16-LK-048422-02 Dossier N°: 16E040955

Emetteur: Commande EOL:

Nom projet : Référence commande :

Code	Analyse	Principe et référence de la méthode	LQI	Unité	Incert.	Prestation réalisée sur le
	Plomb (Pb)		0.5	μg/l	25% (B)	site de :
	Plomb (Pb)			µg/flacon		
LSG98	Thallium (TI) (Barbotage)	1		100.004	0.4990. TOLV	
	Thallium (TI)		0.5	μg/Ι	25% (B)	
	Thallium (TI)			µg/flacon		o
LSH02	Vanadium (V) (Barbotage) Vanadium		0.2	µg/l	20% (B)	
	Vanadium (V)		5.2	ug/flacon	20%(0)	
LSH06	Antimoine (Sb) (Filtre)	-	0.25	μg/Filtre	20% (B)	
LSH08	Arsenic (As) (Filtre)	1	0.25	µg/Filtre	25% (B)	ě
LSH13	Cadmium (Cd) (Filtre)	1	0.1	µg/Filtre	30% (B)	
LSH14	Chrome (Cr) (Filtre)	1	0.25	μg/Filtre	15% (B)	
LSH15	Cobalt (Co) (Filtre)	l l	0.1	μg/Filtre	20% (B)	
LSH16	Cuivre (Cu) (Filtre)	l t	1	µg/Filtre	20% (B)	
LSH19	Manganèse (Mn) (Filtre)	1	0.1	μg/Filtre	30% (B)	ř
LSH21	Nickel (Ni) (Filtre)	1	1	μg/Filtre	25% (B)	6
LSH22	Plomb (Pb) sur filtre	1	0.25	μg/Filtre	15% (B)	ic .
LSH26	Thallium (TI) (Filtre)	1	0.1	μg/Filtre	10% (B)	*
LSH29	Vanadium (V) (Filtre)	1	0.1	μg/Filtre	10% (B)	
LSH60	Mercure (Hg)	SFA / vapeurs froides (CV-AAS) - Méthode interne adaptée de NF EN 13211	0.1	μg/Filtre	15% (B)	
LSH72	Acide chlorhydrique (HCl) /Chlorures sur barbotage	Traitement de la solution d'absorption / Dosage par	12			
	Chlorures (Cl) solubles	Chromatographie ionique - NF EN 1911	0.2	mg CVI	4% (A)	
	Acide chlorhydrique (HCI)			µg/flacon	10.572	
LSH74	Acide fluorhydrique (HF) / Fluorures sur barbotage	Dosage par ionométrie - NF X 43-304 / NF ISO		1,50-5		
	Fluorures	15713	0.1	mg F/I	30% (B)	
	Acide fluorhydrique (HF)			μg/flacon	0.500.00000	
1.01.40	5 10 00 00	0	4	pgrilacon		8
LSL49	Post-pesée des filtres Masse de poussières non corrigée	Gravim etrie - NFX 44-052 et NF EN 13284-1		mg		
	Correction appliquée			mg		
	Incertitude			100000		
	Masse de poussières après correction		0.65	mg mg		
LSL4A	Quantité de poussières sur rinçage (pesée)	1		19		8
LOCAN	Masse de poussières non corrigée			mg		
	Correction appliquée			mg		
	Incertitude			mg		
	Masse de poussières après correction		0.89	mg		
	Masse poussières comgée sur volume		0.00	mg		
LSRAP	total Ammonium (NH4) / Ammoniac (NH3) sur barbotage	Chromatographie ionique - NF X 43-303		1000	-	
LJIVAF	Ammonium (NH4) / Ammoniac (NH3) sur barbotage Ammonium	Surging abuse rounders, IAL V 49-203	0.05	mg/l	40% (B)	
	Ammonium			ug/flacon	(25)	

Page 17/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe technique

Dossier N°: 16E040955 N° de rapport d'analyse :AR-16-LK-048422-02

Emetteur: Commande EOL:

Nom projet : Référence commande :

Air Emission						
Code	Analyse Ammoniac (NH3)	Principe et référence de la méthode	LQI	Unité µg/flacon	Incert.	Prestation réalisée sur le site de :
XXSJ7	Volume de rinçage	Gravimétrie - Méthode interne		ml		C.
XXSJ8	Volume de rinçage	Gravimétrie -		ml		

Tous les éléments de traçabilité sont disponibles sur demande Méthodes de calcul de l'incertitude (valeur maximisée) : (A) : Eurachem (B) : XPT 90-220 (C) : NF ISO 11352 (D) : ISO 15767 (e) : Méthode interne

Page 18/18

EUROFINS ANALYSES POUR L'ENVIRONNEMENT FRANCE SAS

Annexe de traçabilité des échantillons

Cette traçabilité recense les flaconnages des échantillons scannés dans EOL sur le terrain avant envoi au laboratoire

Dossier N°: 16E040955 N° de rapport d'analyse : AR-16-LK-048422-02

Emetteur : Commande EOL :

Nom projet : Référence commande :

Référence Eurofins	Référence Client	Date&Heure Prélèvement	Code-barre	Nom flacon
16E040955-001	BC1 (Blanc)			
16E040955-002	RC1			
16E040955-003	106489 (Blanc)			
16E040955-004	106434			
16E040955-005	RCF1 (Blanc)			
16E040955-006	BF (Blanc)			
16E040955-007	F1B1			
16E040955-008	F1B2			
16E040955-009	BS (Blanc)			
16E040955-010	S1B1			
16E040955-011	S1B2			
16E040955-012	S2			
16E040955-013	S3			
16E040955-014	BCI (Blanc)			
16E040955-015	CI1B1			
16E040955-016	CI1B2			
16E040955-017	CI2			
16E040955-018	C13			
16E040955-019	BNH (Blanc)			
16E040955-020	NH1B1			
16E040955-021	NH1B2			
16E040955-022	NH2			
16E040955-023	NH3			
16E040955-024	BRM (Blanc)			
16E040955-025	RC2			
16E040955-026	106595 (Blanc)			
16E040955-027	105512			
16E040955-028	RC3			
16E040955-029	106243			
16E040955-030	RCF2 (Blanc)			
16E040955-031	RCF3 (Blanc)			
16E040955-032	BM (Blanc)			
16E040955-033	M2 B1+B2			
16E040955-034	M2 B3			
16E040955-035	BHg (Blanc)			
16E040955-036	Hg3 B1+B2			
16E040955-037	Hg3 B3			
16E040955-038	C#59544+C#59540 (Blanc)			
16E040955-039	C#57349+C#58683+Cond1+C	and?		

Eurofins GfA Lab Service GmbH Neuländer Kamp 1 a D-21079 Hamburg **GERMANY**

> Tel: +49 40 492 94 5050 Fax: +49 40 49294 5059

www.dioxine.de; www.dioxins.de

dioxins@eurofins.de

Eurofins GfA Lab Service GmbH · Neuländer Kamp 1 a · D-21079 Hamburg

Person in charge Dr. M. Ambrosius

Eurofins Analyses pour l'Environnement France SAS (Saverne 2) attn. Mrs. Sabine MEYER 5, rue d'Otterswiller 67700 Saverne FRANKREICH

Dr. M. Ambrosius

Report date 08.06.2016

Page 1/2

Analytical report AR-16-GF-022680-01

Sample Code 710-2016-12302001

Reference

Sample sender Reception date time Transport by Client Purchase order nr. Purchase order date Client sample code Packaging Number of containers

Reception temperature

End analysis

Emission (EN 1948) C#59544+C#59540 (Blanc) Mrs. Sabine MEYER 31.05.2016 Bote

EUFRSA200046526 26.05.2016 16E040955-038 **Emissions-Set**

room temperature 08.06.2016

Test results

CY107 Method	PCDD/F ~ 17 congeneres ~ emission EN 1948, GLS DF 100, GC-HRM		
2,3,7,8	-TetraCDD	(not det.) < 0.0022	ng/sample
1,2,3,7	,8-PentaCDD	(not det.) < 0,0030	ng/sample
1,2,3,4	,7,8-HexaCDD	(not det.) < 0,0060	ng/sample
1,2,3,6	,7,8-HexaCDD	(not det.) < 0,0060	ng/sample
1,2,3,7	,8,9-HexaCDD	(not det.) < 0,0060	ng/sample
1,2,3,4	,6,7,8-HeptaCDD	0.0234	ng/sample
OctaCE	DD	0.0657	ng/sample

9907 AG Hamburg Manages: Dr. Fristlan Temme : DE 275912372 • Bank code: 250 500 00 • Account No.: 199878695 • SWIFT-BIC: NOLA DE 2HXXX ESP 72505 0000 0199 3789 95

Our General Terms & Conditions, available upon request and online at http://www.eurofins.de/lebensmittel/kontakt/avb.aspx.shall.apply.

rch die Deutsche Akkreditierungsstelle ibH (DAkkS) akkreditiertes Prüffaboratorium DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren

Analytical report AR-16-GF-022680-01 Sample Code 710-2016-12302001

2,3,7,8-TetraCDF	(not det.) < 0.0040	ng/sample
1,2,3,7,8-PentaCDF	(not det.) < 0,0055	ng/sample
2,3,4,7,8-PentaCDF	(not det.) < 0,0055	ng/sample
1,2,3,4,7,8-HexaCDF	(not det.) < 0,0050	ng/sample
1,2,3,6,7,8-HexaCDF	(not det.) < 0,0050	ng/sample
1,2,3,7,8,9-HexaCDF	(not det.) < 0.0050	ng/sample
2,3,4,6,7,8-HexaCDF	(det.) < 0,0050	ng/sample
1,2,3,4,6,7,8-HeptaCDF	0.0145	ng/sample
1,2,3,4,7,8,9-HeptaCDF	(det.) < 0,0047	ng/sample
OctaCDF	(det.) < 0,040	ng/sample
WHO(1998)-PCDD/F TEQ (lower-bound)	0.000386	ng/sample
WHO(1998)-PCDD/F TEQ (upper-bound)	0.0129	ng/sample
WHO(2005)-PCDD/F TEQ (lower-bound)	0.000399	ng/sample
WHO(2005)-PCDD/F TEQ (upper-bound)	0.0117	ng/sample
I-TEQ (NATO/CCMS) (lower-bound)	0.000445	ng/sample
I-TEQ (NATO/CCMS) (upper-bound)	0.0115	ng/sample
RR 13C12-1,2,3,7,8-PentaCDF	75.2	%
RR 13C12-1,2,3,7,8,9-HexaCDF	96.4	%
RR 13C12-1,2,3,4,7,8,9-HeptaCDF	114	%

^{(°) =} The test was performed at the laboratory site: Am Neuländer Gewerbepark 4 $\,$

not. det. = the compound is not detected in the range below the LOQ (limit of quantification) det. = the compound is detected in the range below the LOQ

The recovery rates of the internal standards are within the limitations of EN 1948.

Analytical Service Manager (Dr. Michael Ambrosius)

The results of examination refer exclusively to the checked samples. Supplicates – even in pasts – must be authorised by the test laboratory in written form: Curofins GNL lab Service GmbH - Neufander Kamp 1 a · D.-21079 Hamburg RIB 11907 AG Hamburg RIB 11907 AG Hamburg Service Manuages Dio Christian Temme. Hamburg St. Dio Christian Temme. Hamburg St. Service St.

Our General Terms & Conditions, available upon request and online at

Durch die Deutsche Akkreditierungsstelle GmbH (DAkkS) akkreditiertes Prüfaboratorium DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren

^{(#) =} Eurofins GfA Lab Service GmbH (Hamburg) is accredited for this test.

< - Concentration below the indicated limit of quantification (LOQ)

Eurofins GfA Lab Service GmbH Neuländer Kamp 1 a D-21079 Hamburg **GERMANY**

> Tel: +49 40 492 94 5050 Fax: +49 40 49294 5059

> > dioxins@eurofins.de

Eurofins GfA Lab Service GmbH · Neuländer Kamp 1 a · D-21079 Hamburg

www.dioxine.de; www.dioxins.de

Eurofins Analyses pour l'Environnement France SAS (Saverne 2) attn. Mrs. Sabine MEYER 5, rue d'Otterswiller 67700 Saverne

Person in charge Dr. M. Ambrosius Dr. M. Ambrosius

> Report date 06.06.2016

> > Page 1/2

Analytical report AR-16-GF-022355-01

Sample Code 710-2016-12302002

Reference

FRANKREICH

Sample sender Reception date time Transport by Client Purchase order nr. Purchase order date Client sample code Packaging Number of containers

Reception temperature End analysis

Emission (EN 1948)

C#57349+C#58683+Cond1+Cond2

Mrs. Sabine MEYER

31.05.2016 Bote

EUFRSA200046526 26.05.2016 16E040955-039

Emissions-Set

room temperature

06.06.2016

Test results

CY107 Method	PCDD/F ~ 17 congeneres ~ emission (EN EN 1948, GLS DF 100, GC-HRMS	1948) (°) (#)	
2,3,7,8	-TetraCDD	0.00926	ng/sample
1,2,3,7	,8-PentaCDD	0.00431	ng/sample
1,2,3,4	,7,8-HexaCDD	(det.) < 0,0060	ng/sample
1,2,3,6	,7,8-HexaCDD	(det.) < 0,0060	ng/sample
1,2,3,7	,8,9-HexaCDD	(det.) < 0,0060	ng/sample
1,2,3,4	,6,7,8-HeptaCDD	0.0358	ng/sample
OctaC[OD	0.0747	ng/sample

119907 AG Hamburg eraf Managers: No. Christian Temme No.: DE 275912377: ULB • Bank code: 250 500 00 • Account No.: 199878895 • SWIFT-BIC: NOLADE2HXXX V EGS7 2590 5000 199 3789 95

Our General Terms & Conditions, available upon request and online at http://www.eurofins.de/lebensmittel/kontakt/avb.aspx.shall.apply.

rch die Deutsche Akkreditierungsstelle ibH (DAkkS) akkreditiertes Prüffaboratorium DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren

Analytical report AR-16-GF-022355-01 Sample Code 710-2016-12302002

2,3,7,8-TetraCDF	0.175	ng/sample
1,2,3,7,8-PentaCDF	0.0304	ng/sample
2,3,4,7,8-PentaCDF	0.0218	ng/sample
1,2,3,4,7,8-HexaCDF	0.00921	ng/sample
1,2,3,6,7,8-HexaCDF	0.0103	ng/sample
1,2,3,7,8,9-HexaCDF	(not det.) < 0,00540	ng/sample
2,3,4,6,7,8-HexaCDF	0.0105	ng/sample
1,2,3,4,6,7,8-HeptaCDF	0.0452	ng/sample
1,2,3,4,7,8,9-HeptaCDF	0.0103	ng/sample
OctaCDF	0.251	ng/sample
WHO(1998)-PCDD/F TEQ (lower-bound)	0.0474	ng/sample
WHO(1998)-PCDD/F TEQ (upper-bound)	0.0497	ng/sample
WHO(2005)-PCDD/F TEQ (lower-bound)	0.0425	ng/sample
WHO(2005)-PCDD/F TEQ (upper-bound)	0.0448	ng/sample
I-TEQ (NATO/CCMS) (lower-bound)	0.0455	ng/sample
I-TEQ (NATO/CCMS) (upper-bound)	0.0479	ng/sample
RR 13C12-1,2,3,7,8-PentaCDF	48.5	%
RR 13C12-1,2,3,7,8,9-HexaCDF	87.5	%
RR 13C12-1,2,3,4,7,8,9-HeptaCDF	98.9	%

^{(°) =} The test was performed at the laboratory site: Am Neuländer Gewerbepark 4

Analytical Service Manager (Dr. Michael Ambrosius)

The results of examination refer exclusively to the checked samples. Supplicates - even in parts - must be surhorized by the test laboratory in written form: Funding Soft Lab Service GmbH - Neufander Kamp 1 a : D-21079 Hamburg Hard Laborator Soft Lab Service GmbH - Neufander Kamp 1a D-21079 Hamburg HR 1 1809 / AG HAMBURG HR 1 1809 / A

Our General Terms & Conditions, available upon request and online at http://www.eurofins.de/liebensmittel/kontakt/lavb.aspx, shall apply.

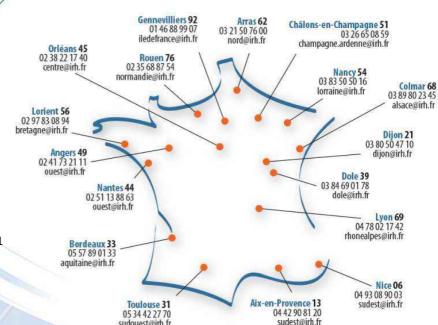
Durch die Deutsche Akkreditierungsstelle GmbH (DAkkS) akkreditiertes Prüffaboratorium DIN EN ISO/IEC 17025:2005 Die Akkreditierung gilt nur für die in der Urkunde aufgeführten Prüfverfahren

^{(#) =} Eurofins GfA Lab Service GmbH (Hamburg) is accredited for this test.

< - Concentration below the indicated limit of quantification (LOQ)

Ce rapport comporte: 77 pages dont: 6 annexes

FIN DU RAPPORT : DCD16007AZ-16-43-R0



Acteur majeur dans les domaines de l'eau, l'air, les déchets et plus récemment l'énergie, IRH Ingénieur Conseil, société du Groupe IRH Environnement, développe depuis plus de 60 ans son savoir-faire en étude, ingénierie et maîtrise d'œuvre environnementale.

Près de 300 spécialistes, chimistes, hydrogéologues, hydrauliciens, automaticiens, agronomes, biologistes, génie-civilistes, répartis sur 18 sites en France, sont à la disposition de nos clients industriels et acteurs publics.

L'indépendance et l'engagement qualité d'IRH Ingénieur Conseil vous garantissent une impartialité et une fiabilité totale.

Site de Beaucouzé

8 rue Olivier de Serres 49070 Beaucouzé

Tél: +33 2 41 73 21 11 - Fax: +33 2 41

73 38 58

www.groupeirhenvironnement.com