

Réalisé par : Site de Beaucouzé 8, rue Olivier de Serres CS 37289 49072 Beaucouzé CEDEX Tél : +33 2 41 73 21 11

Accréditation n°1-7208

cofrac

ESSAIS

Portée disponible sur

www.cofrac.fr

SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

Rapport n°BREP230079-23-56-R1 – 11 décembre 2023

Contrôle inopiné des rejets atmosphériques 2023

Ce rapport annule et remplace le rapport BREP230079-23-59-R0 qui doit être détruit

https://www.anteagroup.fr/services/mesures-eau-air-data

Prestation suivie par Olivier LAURENT -+33 6 45 60 12 82 - olivier.laurent@irh.fr

Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées dans le tableau du paragraphe « objet des essais ».

IRH Ingénieur Conseil n'autorise pas ses clients à faire référence à son accréditation autrement que par la reproduction complète du rapport. Ce rapport ne concerne que les échantillons référencés dans le présent rapport.

La reproduction de ce document n'est autorisée que sous sa forme intégrale.

Les protocoles d'incertitudes sont consultables dans les locaux d'IRH Ingénieur Conseil.

Fiche signalétique

CLIENT	SITE D'INTERVENTION
SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE	SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE
LES GUICHARDIERES	LES GUICHARDIERES
ROUTE DE DOMAGNÉ	ROUTE DE DOMAGNÉ
35500 CORNILLE	35500 CORNILLE
Madame Lucie LANTRAN	
02 99 49 64 40 -	
lucie.lantran@mousquetaires.com	
cyrille.leboidre@mousquetaires.com	
charles.poulard@mousquetaires.com	

INTERVENTION	
Intervention:	Le 19/09/2023
Opérateurs :	Vincent LEPAGE, Salome ESNAULT
Rédacteur :	Vincent LEPAGE

RAPPORT D'IRH INGENIEUR CONSEIL			
Destinataire	Madame Lucie LANTRAN 02 99 49 64 40 - <u>lucie.lantran@mousquetaires.com</u> <u>cyrille.leboidre@mousquetaires.com</u> <u>charles.poulard@mousquetaires.com</u> <u>ci-air.dreal-bretagne@developpement-durable.gouv.fr</u> frederic.meunier @developpement-durable.gouv.fr		
Date de remise	11 décembre 2023		
Nombre d'exemplaire remis	1		
Pièces jointes			
N° de rapport	BREP230079-23-56-R1		
Révision 0	Première version du rapport		
Révision 1 (page13)	Modification de la norme utilisée pour la mesure de HF		

	Nom	Fonction	Signature
Vérifié par	Vincent LEPAGE	Charge d'études	LEPAG Signature numérique de LEPAGE Date: 2023.12.11 11:16:44 +01'00'

Ce document comporte 79 pages dont 8 annexes

Siège social : 14-30, rue Alexandre, bâtiment C, 92635 Gennevilliers cedex IRH Ingénieur Conseil – SAS au capital de 1 200 000 € - SIREN 490 646 395 – Code APE 7112 B

Sommaire

1 Objet des essais	4
2. = Rapport d'Essais	6
2.1 Ligne d'incinération	6
2.1.1 Description de l'installation	6
2.1.2 Description de la section de mesure	6
2.1.3 Plan de mesurage	7
2.1.4 Conditions de fonctionnement et mesures périphériques	7
2.1.5 Résultats des mesures	
3 Conclusion	12
4 Modalités opératoires et matériels utilisés	13
4.1 Modalités opératoires	13
4.2 Observations, écarts aux normes	14
4.3 Matériels utilisés	15
4.4 Gaz étalon	15

Table des annexes

Annexe I : Ligne d'incinération

Annexe II: Données d'autosurveillance

Annexe III : Expression des résultats

Annexe IV : Plan de mesurage

Annexe V : Critères de conformité des blancs de prélèvement

Annexe VI : Schémas des dispositifs de prélèvement

Annexe VII: Rapports d'analyses des laboratoires sous-traitants

1. - Objet des essais

- Procéder aux contrôles réglementaires inopinés des rejets atmosphériques de la société SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE à CORNILLE
- **Texte de référence** : Arrêté préfectoral du 18 juillet 2011
- Installations concernées et composés recensés mesurés :

Paramètres / Installation	Ligne d'incinération				
Nombre axes / trappes normalisées	2	2			
Accès	Es	Escalier (et passerelle)			
	Nb				
	Determination	COFRAC	Mesure Réglementaire		
Débit gazeux	3	Oui	Oui		
Humidité (1)	3	Oui	Oui		
CO2	3	Non	Non		
02	3	Oui	Oui		
СО	3	Oui	Oui		
NOx	3	Oui	Oui		
COV totaux	3	Oui	Oui		
Poussières	1	Oui	Oui		
HCI	3	Oui	Oui		
SO2	3	Oui	Oui		
HF	3	Oui	Oui		
Métaux lourds	1	Oui	Oui		
Hg	1	Oui	Oui		
NH3	3	Oui	Oui		
PCDD/PCDF (eurodiox)	1	Oui	Oui		

(1) Humidité sous accréditation COFRAC si teneur en humidité des rejets comprise entre 4 et 40%.

Les flux horaires sont rendus sous accréditation COFRAC si les concentrations de polluants et les débits gazeux sont réalisés sous accréditation COFRAC. Les flux spécifiques sont rendus hors accréditation.

Les méthodes de prélèvement et d'analyses ainsi que les noms des laboratoires sous-traitants sont présentés au paragraphe 6.1.

Métaux lourds accrédités COFRAC : Arsenic, Cadmium, Chrome, Cobalt, Cuivre, Manganèse, Nickel, Plomb, Antimoine, Thallium, Vanadium

• Détermination COFRAC

Nombre Détermination	COFRAC		Ligne d'incinération
1	Oui	1 détermination car résultats antérieurs < 20% VLE journalière (justificatif fourni par la société rapport VERITAS n°12372533/1.1.3.R du 01/09/22) Ou Mesures de PCDD/F	Poussières, métaux, Hg, HCl PCDD/F
3	Oui	3 déterminations car résultats antérieurs > 20% VLE journalière (justificatif fourni par la société rapport VERITAS n°12372533/1.1.3.R du 01/09/22). Ou Mesures de gaz par méthode automatique	SO2, NH3, HF O ₂ , CO, NOx, COV

• <u>Détermination NON COFRAC</u>

Nombre Détermination	COFRAC		Rejets et paramètres concernés
3	Non	Paramètre non concerné par les agréments, mesure de gaz par méthode automatique	CO ₂

AGREMENTS:

IRH Ingénieur Conseil est agréé par le Ministère de la Transition Ecologique pour effectuer certains types de prélèvements et d'analyses à l'émission des substances dans l'atmosphère jusqu'au 31 décembre 2023 : agréments 1a, 2, 3a, 4a, 5a, 6a, 7, 9a, 10a, 11, 12, 13, 14, 15 et 16a (Arrêté du 9 juin 2023 publié au JO du 2 juillet 2023).

2. - Rapport d'Essais

2.1. - Ligne d'incinération

2.1.1. - Description de l'installation

Les données précisées dans le tableau ci-dessous ont été fournies par le client.

Secteur industriel	Incinérateur
Description du process	Incinération de boues et de farines
Capacité nominale	7 tonnes / heure
Procédé continu/cyclique	Continu
Traitement des gaz	Electrofiltre, FAM, injection bicarbonate et NH3

2.1.2. - Description de la section de mesure

La Norme NF EN 15 259 relative à la "Qualité de l'air - Mesurage des émissions de sources fixes - Exigences relatives aux sections et aux sites de mesurage et relatives à l'objectif, au plan et au rapport de mesurage" définit les caractéristiques de la section de mesure et du point de prélèvement. Lors de notre intervention, les observations suivantes ont été effectuées sur l'installation contrôlée :

EXIGENCES DE LA NORME NF EN 15 259			
	Description	Conformité	Commentaires
Dimensions de la section de mesure (mm)	800	-	
Conduit (1)	vertical	-	
Nombre d'axes de mesure disponible	2 (Ø > 350 mm)	conforme	
Trappes normalisées / Nombre	2	conforme	
Longueur droite amont	> 5 Dh(2)	conforme	
Longueur droite aval	> 5 Dh(2) sans coude	conforme	
Angle d'écoulement gazeux (par rapport à l'axe du conduit)	<15°	conforme	
Ecoulement négatif	Non	conforme	
Pression différentielle minimale	> 5 Pa	conforme	
Rapport entre vitesse locale la plus élevée et la plus faible	<3	conforme	
Accès sécurisé permettant le levage des appareils de mesure (si nécessaire)	escalier et passerelle	conforme	
Recul (si 1 trappe : zone travail = diamètre + paroi + 1,5m / si 2 trappes opposées : zone travail = ½ diamètre + paroi + 1,5 m)	suffisant	conforme	

^{(1):} La Norme NF EN 15 259 préconise un conduit vertical (2): Dh : Diamètre hydraulique

2.1.3. - Plan de mesurage

Plan de mesurage				
Configuration/ Source	Application au point de mesure			
Ana Homogène selon NFX 43-551 (1)	Analyse gaz en continu	mesure en un point		
nomogene selon W A 5 552 (1)	Méthodes manuelles	balayage ou quadrillage de la section si 2 axes disponibles		
(1) Les effluents sont issus d'un seul émetteur et absence d'entrée d'air				

2.1.4. - Conditions de fonctionnement et mesures périphériques

Les conditions de fonctionnement des installations sont fournies par la société **SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE.**

Conditions de fonctionnem	ent de l'installat	ion et mesura	ges périphéri	ques	
Conditions de fonctionnement de	Fonctionnement normal				
l'installation	(6 t/h de matières incinerées)				
Incident pendant les mesures	Aucun incident				
	Essai 1 Essai 2 Essai 3 Moye				Moyenne
Date		19/09/2023	19/09/2023	19/09/2023	
Heure		11h20	12h40	13h50	
Vitesse au point de mesure	m/s	31,1	31,5	30,1	30,9 (1)
Température moyenne des gaz	°C	176,0	178,5	174,0	176,2 (1)
Teneur en vapeur d'eau	% volume	23,8	17,7	18,6	20,0 (1)
Débit des gaz humides aux conditions réelles	m³/h	56286	56969	54542	55932 (1)
Débit des gaz secs aux conditions normales	Nm³ sec/h	26131	28382	27140	27218 (1)

Conditions de fonctionnement de l'installation et m	nesurages pé	riphériques
	Fonctio	nnement
Conditions de fonctionnement de l'installation	no	rmal
Conditions de fonctionnement de l'installation	(6 t/h de	e matières
	incin	erées)
Incident pendant les mesures	Aucun	incident
		Essai 1
Date		19/09/2023
Heure		16h15
Vitesse au point de mesure	m/s	29,8 (1)
Température moyenne des gaz	°C	176
Teneur en vapeur d'eau	% volume	17,5 (1)
Débit des gaz humides aux conditions réelles	m³/h	53889 (1)
Débit des gaz secs aux conditions normales	Nm³ sec/h	27068 (1)

(1) Le détail de toutes les mesures est reporté en annexe.

2.1.5. - Résultats des mesures

Le tableau suivant donne les concentrations mesurées lors de l'intervention et les flux calculés à partir des mesures. En face de chaque paramètre sont données les **prescriptions du texte de référence**. Les résultats sont donnés dans les tableaux ci-après en valeurs brutes et en valeurs corrigées à 11% d'O₂.

Les concentrations sont calculées sur gaz sec dans les Conditions Normales de température et de pression (273 kelvins et 1 013 hPa) et exprimées en mg/Nm³ sec (milligrammes par Normaux mètres cubes de gaz sec).

Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

	Ligne d'incinération		Essai 1	Essai 2	Essai 3	Moyenne	VLE	Ecart à la norme O/N (1)
Date			19/09/2023	19/09/2023	19/09/2023			
Heure début			11:26	12:43	13:55			
Heure fin			12:29	13:46	14:58			
Vitesse d'éjection		s/ш	31	32	30	31	>12	
Débit gazeux		Nm³ sec/h	26131	28382	27140	27218		
Poussières totales								
	Valeur brute		0,27			0,27		
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	0,52			0,52	10 ⁽¹⁾ 30 ⁽²⁾	z
Flux massique		d/g	7,1			7,1		
Dioxyde de soufre (SO ₂)	SO ₂)							
	Valeur brute		1,8	7,6	6,1	5,2		
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	3,4	41	12	8,6	50 ⁽¹⁾ 200 ⁽²⁾	z
Flux massique		d/g	48	216	166	143		
Acide chlorhydrique (HCI)	(HCI)							
	Valeur brute		0,56	1,8	1,7	1,4		
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	1,1	3,4	3,2	2,6	10 ⁽¹⁾ 60 ⁽²⁾	z
Flux massique		g/h	15	51	46	37		
Ammoniac (NH ₃)								
	Valeur brute		11	5,1	4,9	2,0		
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	21	9,6	9,5	13	30 ⁽¹⁾ 100 ⁽²⁾	z
Flux massique		g/h	288	145	133	189		
Acide fluorhydrique (HF)	(HF)							
	Valeur brute		0,039	0,019	0,047	0,035		
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	0,073	0,037	0,088	990'0	1 (1) 4 (2)	z
Flux massique		d/b	1,0	0,55	1,3	0,94		
(1) Semi-horaire (2) journalière	2) journalière							

Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

		ė		ā	
	Ligne d'incinération		Essai 1	VLE	Ecart à la norme O/N (1)
Date			19/09/2023		
Heure début			16:22		
Heure fin			17:25		
Débit gazeux		Nm³ sec/h	27068		
METAUX ET MERCURE	URE				
Mercure particulaire et gazeux (Hg)	re et gazeux (Hg)				
	Valeur brute	ma/Nlm3 000	0,0030		
Concentration	Valeur corrigée à O ₂ ref	IIIg/IVIII sec	0,0058	0,05	N
Flux massique		d/b	0,083		
Cd+TI					
	Valeur brute	(N m 3 000	0,000065		
Concentiation	Valeur corrigée à O ₂ ref	IIIg/Iviiii sec	0,00012	0,05	Z
Flux massique		d/b	0,0018		
Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V	+Cu+Mn+Ni+V				
	Valeur brute	ma/Nlm ³ 000	0,017		
Concentration	Valeur corrigée à O ₂ ref	ilig/iviii sec	0,031	9,0	Z
Flux massique		g/h	0,45		

	Ligne d'incinération		Essai 1	VLE	Ecart à la norme O/N (1)
Date			19/09/2023		
Heure début			10:10		
Heure fin			16:15		
				<u> </u>	
Débit gazeux		Nm³ sec/h	27143		
Dioxines et fura	Dioxines et furannes (PCDD/PCDF)				
100000	Valeur brute	17EO/Nm3 000	0,016		
Concentration	Valeur corrigée à O ₂ ref		0,030	0,10	Z
Flux massique		ng ITEQ/h	0,43		

Détail des dioxines en annexes

Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

								;
	Ligne d'incinération		Essai 1	Essai 2	Essai 3	Moyenne	VLE	Ecarts a la norme O/N
		ANA	ANALYSE DE GAZ EN CONTINU	IN CONTINU				
Date			19/09/23	19/09/23	19/09/23			
Heure début			11:26	12:11	12:56			
Heure fin			12:11	12:56	13:41			
Débit gazeux		Nm³ sec/h	26124	28373	27132	27210		
O2 référence		%		11				
			Oxygène (O ₂)	O ₂)				
Concentration		%	15,6	15,9	15,6	15,7		
			Dioxyde de carbone (CO ₂)	one (CO ₂)				
Concentration		%	4,7	4,6	4,8	4,7		
		N	Monoxyde de carbone (CO)	one (CO)				
	Valeur brute		0	0	0	0		
Concentration	Valeur corrigée à O ₂ ref	mg/Nm³ sec	0	0	0	0	50 ⁽¹⁾ 100 ⁽²⁾	z
Flux massique		g/h	0	0	0	0		
			Oxydes d'azote (NOx)	(NOx)				
	Valeur brute		33	49	09	47		
Concentration	Valeur corrigée à O ₂ ref	mgNO ₂ /Nm³ sec	61	100	110	06	200 ⁽¹⁾ 400 ⁽²⁾	z
Flux massique		gNO2/h	862	1390	1628	1293		
		Composé	Composés organiques volatils totaux (COVt)	atils totaux (Ct	OVt)			
	Valeur brute		4,4	3,5	6,2	4,7		
Concentration	Valeur corrigée à O ₂ ref	mgC/Nm³ sec	8,1	6'9	12	8,9	10 ⁽¹⁾ 20 ⁽²⁾	Z
Flux massique		gC/h	115	66	168	127		

N : la mesure ne fait pas l'objet d'un écart ; O : la mesure fait l'objet d'un écart - voir paragraphe 4.2 : Observations-Ecarts aux normes

Remarque :

En application de la norme NFX 43 551, les règles d'expression des résultats à partir des résultats d'analyses sont les suivantes :

- Résultat d'analyse < Limite de Détection (LQ/3), la valeur retenue est : 0
- Limite de Détection (LQ/3) <Résultat d'analyse < Limite de quantification : la valeur retenue est LQ/2

⁽¹⁾ Semi-horaire (2) journalière

3. - Conclusion

Les éléments qui suivent sont couverts par l'accréditation uniquement pour les résultats finaux déterminés sous accréditation (cf. paragraphe Objet des essais).

Seuls les résultats des paramètres remis sous accréditation et faisant l'objet d'un contrôle réglementaire identifiés au paragraphe Objet des essais, sont comparés aux exigences de l'arrêté préfectoral du 18 juillet 2011

Ils respectent la réglementation par rapport aux valeurs limites réglementaires.

Installations	Respect des VLE	Paramètres en dépassements
Ligne d'incinération	Oui	-

En ce qui concerne les paramètres hors accréditation COFRAC, se reporter aux tableaux de résultats où la VLE est donnée à titre indicatif.

Pour la comparaison aux valeurs limites, il n'a pas été tenu compte explicitement de l'incertitude associée au résultat.

4. - Modalités opératoires et matériels utilisés

4.1. - Modalités opératoires

La mise en œuvre de protocoles de prélèvement et d'analyse normalisés et accrédités COFRAC (cf. § Objet des essais), est respectivement réalisée par les équipes d'IRH Ingénieur Conseil et nos laboratoires partenaires (cf. tableau ci-après). Le cas échéant, les références à l'accréditation du laboratoire sont indiquées dans le rapport d'analyse joint en annexe.

Paramètres	Normes utilisées	Précisions sur la méthode	Laboratoire sous traitant
Débit gazeux	NF EN ISO 16911-1 - FD X 43-140	Mesure effectuée au niveau du point de prélèvement au tube de Pitot double selon la norme NF EN ISO 16911-1. La température sera mesurée par un thermocouple K	
Humidité	NF EN 14 790	Mesure selon NF EN 14 790 par condensation et adsorption de la vapeur dans une ligne de barbotage.	
CO2	X 43-300	Analyse en continu par analyseur de gaz automatique. Méthode par infra rouge	
O2	NF EN 14789	Analyse en continu par analyseur de gaz automatique. Méthode par paramagnétisme	
СО	NF EN 15058	Analyse en continu par analyseur de gaz automatique. Méthode par infra rouge	
NOx	NF EN 14792 (Chimiluminescence)	Analyse en continu par analyseur de gaz automatique avec four de réduction NO2 – NO. Méthode par chimiluminescence	
COV totaux	NF EN 12.619	Analyse en continu par analyseur de gaz automatique FID (détecteur à ionisation de flamme)	
Poussières	NFX 44 052	Prélèvement sur filtre et analyse par gravimétrie	Eurofins Saverne
нсі	NF EN 1911	Prélèvement par barbotage dans H2O ultra pure et analyse par chromatographie ionique	Eurofins Saverne
SO2	NF EN 14 791	Prélèvement par barbotage dans une solution d'H2O2 et analyse par chromatographie ionique	Eurofins Saverne
HF	NF CEN/TS 17340	Prélèvement sur filtre et barbotage dans une solution de soude 0,1 N et analyse par ionométrie	Eurofins Saverne
Métaux lourds	NF EN 14 385	Métaux particulaire (fraction filtrée) : prélèvement sur filtre et analyse après minéralisation par ICP-MS. Métaux gazeux (fraction passante) : prélèvement par barbotage (HNO3 + H2O2) et analyse par ICP-MS	Eurofins Saverne
Hg	NF EN 13 211	Hg particulaire: prélèvement sur filtre et analyse par SFA après minéralisation Hg gazeux : prélèvement par barbotage (H2SO4+KMnO4) et analyse par SFA	Eurofins Saverne
NH3	NF EN ISO 21877	Prélèvement par barbotage dans H2SO4 puis analyse par chromatographie ionique	Eurofins Saverne
PCDD/PCDF	NF EN 1948-1	Méthode par condensation (sonde refroidie) puis filtration et adsorption sur résine XAD2 (système Eurodiox) Méthode par filtration puis condensation et adsorption sur résine XAD2 (Casing)	Eurofins Saverne

Test d'étanchéité

Mesures manuelles

Mise sous dépression du système d'échantillonnage et contrôle du débit de fuite (< 2% du débit nominal)

• Analyses de gaz en continu

Vérification de la réponse de l'analyseur par introduction du gaz étalon en direct sur l'appareil et en tête de ligne de prélèvement.

4.2. - Observations, écarts aux normes

« Le numéro d'accréditation de IRH Ingénieur Conseil a changé à la suite de l'obtention de l'accréditation multisites. Ce changement n'a aucun impact sur la prestation réalisée. »

Observations pour les rendements de barbotage :

Métaux : Présence d'antimoine, de cadmium et de nickel dans le dernier barboteur : Le rendement est inférieur à 90 % mais résultat est inférieur à 20 % de la VLE : le prélèvement peut être validé.

Prélèvement de SO2 :

L'incertitude de mesure de répond pas aux exigences de la norme NFX 43551, mais le résultat associé est inférieur à 20% de la VLE : le prélèvement peut être validé.

Dérogations pour les mesures de vitesse et débit d'air selon la norme NF EN 16911 :

RAPPEL DES EXIGENCES:

- Ecart < 5% entre vitesses moyennes de chaque axe
- Angle giration 15°
- 5 Dh amont et aval
- Vitesse entre 5 et 50m/s
- pas de débit négatif
- T° en chaque point ne doit pas différer de + de 5% de la T° moy

4.3. - Matériels utilisés

Paramètres	Constructeur	Modèle
Vitore	KIMO	Pitot double
Vitesse	KIMO	MP200
Masura do tomorávatura	TESTO	Modèle 440 dP
Mesure de température	KIMO	MP200
Pression atmosphérique	TESTO	Modèle 511
	STI CONCEPT	Coffret MONO POMPE
Système de prélèvement de gaz	STI CONCEPT	Coffret auto régulé
en passerelle	STI CONCEPT	Coffret 4 pompes
	STI CONCEPT	Coffret 2 pompes
HF - Hg - Métaux particulaires	ARELCO	Porte-filtre 90 mm
Poussières	ARELCO	Porte-filtre 90 mm
HCl - HF - SO ₂ - Hg - métaux	TECHLAR	Barboteurs frittés en verre
gazeux	TECHLAB	borosilicaté (250 ml)
PCDD / PCDF	ARELCO	Casing
HPA	TECHLAB	Verrerie
ПРА	ACTARIS	Gallus 2000
PCDD / PCDF	EUROFINS	EURODIOX
Ligne de prélèvement gazeux pour les analyseurs de gaz	EFRAPO	Ligne de prélèvement froide (Téflon) avec condenseur en tête de ligne (Hors COV)
Ligne de prélèvement gazeux pour les COV	M et C SIEMENS	Filtre + ligne chauffés
Conditionnement du gaz pour l'analyse en continu	M et C	PS S10
$O_2 - CO - CO_2 - NOx$	HORIBA	PG 350 (Infra-rouge + chimiluminescence)
cov	JUM	109L (FID) avec filtre + ligne chauffés
Système d'acquisition des	HORIBA	Logiciel /PG 350
Système d'acquisition des données	IRH	Logiciel interne
uoiiilees	LAB JACK (JUM)	e_log

4.4. - Gaz étalon

Gaz	Concentration	Certification
$O_2/CO_2/CO$	O ₂ : 10 % ; CO ₂ : 10 %, CO 200 ppm qsp N ₂	SCS
C ₃ H ₈	C₃H ₈ : 30 ppm ; O₂:20,9 % qsp N₂	SCS
NO	NO : 200 ppm qsp N₂	SCS
Air	Gaz de zéro (FID)	Qualité 5.0 MESSER
N ₂	Gaz de zéro	Qualité 5.0 MESSER

Observations sur l'utilisation du rapport

Sauf avis contraire de votre part, la présente prestation sera intégrée dans la liste des références d'IRH Ingénieur Conseil. Les noms de nos clients, les titres des prestations ainsi que leurs montants sont ainsi susceptibles d'être communiqués à des tiers.

Ce rapport devient la propriété du Client après paiement intégral de la mission ; son utilisation étant interdite jusqu'à ce paiement. A partir de ce moment, le Client devient libre d'utiliser le rapport et de le diffuser, sous réserve de respecter les limites d'utilisation décrites ci-dessus.

Pour rappel, les conditions générales de vente ainsi que les informations de présentation d'IRH Ingénieur Conseil sont consultables sur : https://www.anteagroup.fr/fr/annexes.

ANNEXES

Annexe I : Ligne d'incinération

Annexe II : Données d'autosurveillance

Annexe III : Expression des résultats

Annexe IV: Plan de mesurage

Annexe V : Critères de conformité des blancs de prélèvement

Annexe VI: Schémas des dispositifs de prélèvement

Annexe VII: Rapports d'analyses des laboratoires sous-traitants

Annexe I: Ligne d'incinération

irh ingénieu consei membre d'Antes Group		VITE	SSES - DEBIT	GAZEUX AV	EC CORRECT	TION TEMPO	RELLE		
SITE :		SAVE Cornill	é		INSTALLATIO	N:	Ligne d'inci	nération	
ESSAI N°		E1			Méthode: Mes	ure en un point	fixe sur la dur	ée de l'essai er	n polluant
Date et horai	re de mesurag	ge:		19-sept-23	à	11h20			
	Ottor - Assa	Paramètres		Un	ités	Résu	ltats		
The second second second	dimension cor	nduit			n	0,8			
Pression atm					Pa	10			
	moyenne des	fumées			С	176			
Teneur moye					lume	23			
Masse volun				kg/		1,3			
Pression sta	ti que moyenne				Pa	-0,	23		
				explorat	ion initiale	ī			
	Distance à	Ax	e1	Ax	e2	Ax	e3	А	xe4
Points	la paroi (mm)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)
1	54	30,9	176	31,4	176	(4.500) (50.000)	10.735	Encourage of the party	10.25,200001
2	200	29,6	176	30,1	176				
	3 600 31,2 176			30,1	176				
	4 746 30,7 176			30,6	176				
	5			35,5	2.0				
6									
6 7									
7 8									
9									
				Un	ités	Résu	ltats	1	
Paramètres				Offices		Valeurs	Incertitudes	γρ	
Vitesse moyenne sur la section de mesurage :				m/s		30,6	± 1,2	onfianc	
Débit des fu	mées mesuré	lors de l'explo	ration initiale:					ge c	
		- con	ditions conduit	m³ humide/h		55351	± 4 900	alle	
	- condi	tions normale	s : 0°C; 1013hPa	Nm ³ hu	mide/h	33713	± 3 300	nten	
	- conditions n	ormales sèche	s : 0°C; 1013hPa	Nm ³	sec /h	25697	± 2 500	un i	
Numéro du p	ooint choisi en	point fixe		Nm ³ sec /h		Axe 1 Point 2		ıdent à =2)	
Vitesse mesu l'exploration		ixe choisi pend	ant	m	/s	29,	60	Les incertitudes mentionnées correspondent à un intervalle de confiance de 95% (k=2)	
Vitesse moye la durée de l'		au point fixe o	hoisi pendant	m	/s	30,	10	nnées ca	
Vitesse moye durée de l'es		tion de mesura	age pendant la	m	/s	31,	12	mention	
Débit des f	umées moyen	pendant la du	rée de l'essai:	7). V		6. V		sapı	
		- con	ditions conduit	m³ hur	nide /h	562	286	ertitu	
			s : 0°C; 1013hPa s : 0°C; 1013hPa	The state of the s	mide/h	342 261	apay:	Les inco	
		seale			sec /h				
V min>5 m/s				OUI	Commentaires	:			
(Vmax/Vmin				1,06					
	-Vmoydiam)<59	%Vmoydiam		OUI					
(Ti-Tmoy)<5%	Tmoy			OUI					
E/PMC/AIR/11	ev37								

VITESSES - DEBIT GAZEUX AVEC CORRECTION TEMPORELLE

SITE: SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI N° E2 Méthode: Mesure en un point fixe sur la durée de l'essai en polluant

Date et horaire de mesurage : 19-sept-23 à 12h40

Paramètres	Unités	Résultats		
Diamètre ou dimension conduit	m	0,8		
Pression atmosphérique	hPa	1015		
Température moyenne des fumées	°C	178,5		
Teneur moyenne en ea u	% volume	17,7		
Masse volumique gaz	kg/m ³	1,311		
Pression statique moyenne	hPa	-0,33		

exploration initiale

	Distance à	Ax	e1	Ax	e2	Ax	e3	А	xe4
Points	la paroi (mm)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)
1	54	29,8	178,5	29,9	178,5				
2	200	29,9	178,5	29,9	178,5				
3	600	29,9	178,5	30,0	178,5				
4	746	29,9	178,5	29,8	178,5				
5									
6									
7									
8									
9									

Paramètres	Unités	Rés	sultats
		Valeurs	Incertitude
Vitesse moyenne sur la section de mesurage :	m/s	29,9	± 1,2
Débit des fumées mesuré lors de l'exploration initiale:			
- conditions conduit	m³ humide/h	54084	± 4 800
- conditions normales : 0°C; 1013hPa	Nm ³ humide /h	32756	± 3 200
- conditions normales sèches : 0°C; 1013hPa	Nm ³ sec /h	26944	± 2 600
Vitesse mesurée au point fixe choisi pendant 'exploration	m/s	31	0,00
Vitesse moyenne mesurée au point fixe choisi pendant la durée de l'essai	m/s	3	1,60
Vitesse moyenne sur la section de mesurage pendant la	m/s	2	
duree de l'essai	111/3	3	1,49
durée de l'essai Débit des fumées moyen pendant la durée de l'essai:	111/3	3	1,49
ACADA CONTROL	m³ humide /h		1,49 5969

mentionnées	correspondent à	un	=
	C = A S C		

Les incertitudes

28382

itervalle de confiance de

V min>5 m/s

(Vmax/Vmin)<3

(Vmoydiam i-Vmoydiam)<5%Vmoydiam

(Ti-Tmoy)<5%Tmoy

E/PMC/AIR/11 rev37

Commentaires:

OUI

OUI

- conditions normales sèches : 0°C; 1013hPa

VITESSES - DEBIT GAZEUX AVEC CORRECTION TEMPORELLE

SITE: SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI N° E3 Méthode: Mesure en un point fixe sur la durée de l'essai en polluant

Date et horaire de mesurage : 19-sept-23 à 13h50

Paramètres	Unités	Résultats
Diamètre ou dimension conduit	m	0,8
Pression atmosphérique	hPa	1015
Température moyenne des fumées	°C	174,0
Teneur moyenne en ea u	% volume	18,6
Masse volumique gaz	kg/m ³	1,311
Pression statique moyenne	hPa	-1,00

exploration initiale

	Distance à	Ax	e1	Ax	e2	Ax	e3	А	xe4
Points	la paroi (mm)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)
1	54	31,3	174	30,8	174				
2	200	31,5	174	31,2	174				
3	600	31,7	174	31,4	174				
4	746	29,5	174	31,6	174				
5									
6									
7									
8									
9									

Paramètres	Unités	Résultats		
		Valeurs	Incertitudes	
Vitesse moyenne sur la section de mesurage :	m/s	31,1	±1,2	
Débit des fumées mesuré lors de l'exploration initiale:				
- conditions conduit	m³ humide/h	56319	±5000	
- conditions normales : 0°C; 1013hPa	Nm ³ humide/h	34430	± 3 300	
- conditions normales sèches : 0°C; 1013hPa	Nm ³ sec /h	28024	± 2 700	
Vitesse mesurée au point fixe choisi pendant l'exploration	m/s	3	1,70	
Vitesse moyenne mesurée au point fixe choisi pendant	m/s		0,70	
la durée de l'essai	WW.63	200		
Vitesse moyenne sur la section de mesurage pendant la durée de l'essai	m/s	3	0,12	
Débit des fumées moyen pendant la durée de l'essai:		100		
- conditions conduit	m³ humide/h	54	1542	
- conditions normales : 0°C; 1013hPa	Nm³ humide /h	33	3344	
- conditions normales sàches : 0°C: 1013hPa	N=3 === /h	27140		

ğ	
confiance	
de i	
intervalle	
un	
0	
correspondent	20000
mentionnées	
Les incertitudes	

V min>5 m/s	OUI	Commentaires :
(Vmax/Vmin)<3	1,08	And the state of t
(Vmoydiam i-Vmoydiam)<5%Vmoydiam	OUI	
(Ti-Tmoy)<5%Tmoy	OUI	
E/PMC/AIR/11 rev37		

VITESSES - DEBIT GAZEUX AVEC CORRECTION TEMPORELLE

SITE: SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI N° E4 Méthode: Mesure en un point fixe sur la durée de l'essai en polluant

Date et horaire de mesurage : 19-sept-23 à 16h15

Paramètres	Unités	Résultats
Diamètre ou dimension conduit	m	0,8
Pression atmosphérique	hPa	1015
Température moyenne des fumées	°C	176,0
Teneur moyenne en ea u	% volume	17,5
Masse volumique gaz	kg/m ³	1,311
Pression statique moyenne	hPa	-0,52

exploration initiale

	Distance à	Ax	e1	Ax	e2	Ax	e3	А	xe4
Points	la paroi (mm)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)	Vitesse Locale (m/s)	Température (°C)
1	54	30,9	176	29,7	176				
2	200	30,6	176	30,1	176				
3	600	31,4	176	30,9	176				
4	746	30,2	176	29,8	176				
5									
6									
7									
8									
9									

Paramètres	Unités	Rés	Résultats		
		Valeurs	Incertitudes		
Vitesse moyenne sur la section de mesurage :	m/s	30,5	±1,2		
Débit des fumées mesuré lors de l'exploration initiale:					
- conditions conduit	m³ humide/h	55138	± 4 900		
- conditions normales : 0°C; 1013hPa	Nm ³ humide /h	33574	±3200		
- conditions normales sèches : 0°C; 1013hPa	Nm ³ sec /h	27695	± 2 700		
Vitesse mesurée au point fixe choisi pendant l'exploration	m/s	3	0,90		
AT THE RESIDENCE OF THE PROPERTY OF THE PROPER	m/s	31	0,90		
la durée de l'essai	m/s	3(0,20		
Vitesse moyenne sur la section de mesurage pendant la durée de l'essai	m/s	2	9,81		
Débit des fumées moyen pendant la durée de l'essai:		- 00 - 00			
- conditions conduit	m³ humide/h	58	8889		
- conditions normales : 0°C; 1013hPa	Nm³ humide /h	32	2813		
	Nos ³ coo /b	27068			

Les incertitudes mentionnées correspondent à un intervalle de confiance de 95% (k=2)

V min>5 m/s	OUI	Commentaires :
(Vmax/Vmin)<3	1,06	
(Vmoydiam i-Vmoydiam)<5%Vmoydiam	OUI	
(Ti-Tmoy)<5%Tmoy	OUI	
E/PMC/AIR/11 rev37		

SITE :	SAVE Cornillé					
INSTALLATION:	Ligne d'incinération					
ESSAI N° :		E1				
	Date et horaires de mesurage :	19-sept-23	de	11:26	à	12:29
CAZBBELEVE CEC						
GAZ PRELEVE SEC	Volume Bane principale	0.843	Nm³ sec			
	Volume ligne principale	0,842	NIII Sec			
	Volume lignes dérivées	0,785	Nm³ sec			
	Volume total	1,627	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	remperature we in outlife .	,0	\ -/			
	Température du filtre :	110,0	(°C)			
FILTRATION	Intérieur conduit					
i E i i i i i i i i i i i i i i i i i i	Extérieur conduit	X				
ISOCINETISME		100000				
	Isocinétisme	111%				
FILTRE DE PRELEVEMEN	Identification	E1 707180				
DET MELLY LINEN	Identification du flacon de rinçage	E1 RC				
CONCENTRATION DU BLA	NC .					
CONCENTRATION DO BLA	Identification Filtre blanc	F1 902691 /Blanc				
	Identification Blanc de canne					
	Masse corrigée blanc de filtre	0,00	mg			
	Masse corrigée blanc de canne	0.445	ma			
CONCENTRATION EN POU	ISSIEDES					
CONCENTRATION EN FOC	Masse corrigée sur filtre	0	mg			
	Masse corrigée dans le rinçage	0,445	mg			
Ma	sse totale de poussière récupérée	0,445	mg			
	Concentration retenue	0,273	± 0,33 mg poussières / Nm³ sec			
Con	centration prélèvement à O₂ref	0,516	± 0,67 mg poussières / Nm³ sec			
	Blanc de prélèvement	0,27	mg poussières/Nm³ sec			
Concentra	ation blanc de prélèvement à O ₂ ref		mg poussières/Nm³ sec			
	Rapport Blanc /VLE	5,16%	Conforme			
	Les incertitudes sont données pou	ur un intervalle de d	confiance de 95% (k=2)			
	Test étanchéité					
	DALTA AND AND AND AND AND AND AND AND AND AN	45				
	Débit de prélèvement (l/min)	15				
	Débit de prélèvement fin (l/min)	15	1			
	Débit de fuite début (l/min) Débit de fuite fin (l/min)	0,1 0,2	1			
	Validation test de fuite début	0,2	1			
	Validation test de fuite debut Validation test de fuite fin	0	1			

VALIDATION DE LA LQ PAR RAPPORT A LA VLE

SITE : SAVE Cornillé INSTALLATION : Ligne d'incinération

ESSAI N° : E1
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)		LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 % VLE)
Poussières (Eurofins) 90mm	10	mg/Nm3 sec	-	1,627	1,786	17,9	Conforme

SITE :	SAVE Cornillé					
INSTALLATION:	Ligne d'incinération					
ESSAI N°	E1 CI					
	BOX 100 A MODULA MADE OF A MODE OF A		104.00			
	Date et horaires de mesurage :	19-sept-23	de	11:26	à	12:29
GAZ PRELEVE SEC	3					
	Volume ligne dérivée	0,199	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	Température du filtre :	110,0	(°C)			
	remperature du mite .	110,0	(0)			
CONCENTRATION	DU BLANC					
	Identification du Blanc	E1 BCI (Blanc)				
	Concentration du blanc de barboteurs	0	mg Cl ⁻ /I			
	Volume du blanc de barboteurs	0	ml			
	Masse dans le blanc de barboteurs	0,000	mg Cl			
	Masse dans le blanc de barboteurs	0,000	mg HCl			
CONCENTRATION						
	Identification du Barboteur 1	E1 Cl (B1)				
	Identification du Barboteur 2	E1 CI (B2)				
Co	oncentration de la solution du barboteur 1	0,98	mg Cl ⁻ /l			
	olume ajusté de la solution du barboteur 1	110	ml			
	oncentration de la solution du barboteur 2	0	mg Cl*/I			
V	olume ajusté de la solution du barboteur 2 Rendement barbotage	94	ml			
	Nondement bulbotage	100,070				
	Masse prélevée	0,11	mg HCl			
	iviasse preiewee	0,11	ing rici			
	Concentration retenue	0,56	± 0,05 mg HCI / Nm³ sec			
	Concentration prélèvement à O ₂ ref	1,052	± 0,11 mg HCl / Nm³ sec			
	Diana da autilia au	0	ma LICI/N3			
C	Blanc de prélèvement oncentration blanc de prélèvement à O ₂ ref	0,000	mg HCl/Nm ³ sec mg HCl/Nm ³ sec			
C	- 27	1.	mg HCI/Nm* sec			
	Rapport Blanc /VLE	0%	- Contonine			
	Les incertitudes sont données pour un inte	ervalle de confiance	de 95% (k=2)			
	Test étanchéité		-			
	Débit de prélèvement début (I/min)	3,5				
	Débit de prélèvement fin (l/min)	3,5				
	Débit de fuite début (I/min)	0,01				
	Débit de fuite fin (l/min) Validation test de fuite début	0,01	-			
	Validation test de fuite debut	ő				
E/PMC/AIR/11 rev37			1			

SITE: SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI № : E1
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)		LQ/VLE (%)	Conformité (< 20 %VLE)
HCI	10	ma/Nm3 sec	0,199	0.398	4.0	Conforme

ESSAI №: E2 CI Date et horaires de mesurage: 19-sept-23 de 12:43 à 13:46 GAZ PRELEVE SEC Volume ligne dérivée 0,195 Nm³ sec Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du filtre: 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs 0 mg Cl² /I Masse dans le blanc de barboteurs 0,000 mg Cl² Masse dans le blanc de barboteurs 0,000 mg Cl² Masse dans le blanc de barboteurs 0,000 mg HCl							
ESSAI N*: E2 CI Date et horaires de mesurage: 19-sept-23 de 12-43 à 13:46 GAZ PRELEVE SEC Volume ligne dérivée 0,195 Nm³ sec Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du filtre: 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc du Barboteur 1 Identification du Barboteur 1 Identification du Barboteur 1 Identification du Barboteur 2 Identification du Barboteur 1 Volume ajusté de la solution du barboteur 2 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Tendement barbotage Masse prélevée O,35 mg HCI Concentration prélevement 2 0,000 Masse prélevéement 0,000 Masse prélevéement 0,000 Rapport Blanc /VLE Les incertitudes sont données pour un internalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement fu (l/min) Oètit de prélèvement fu (l/min) Oètit de prélèvement fu (l/min) Oètit de faite fin (l/min) Oètit de faite fin (l/min) Oètit de faite fin (l/min) Validation test de faite debut (l/min) Validation test de faite fin (l/min)	SITE :	SAVE Cornillé					
Date et horaires de mesurage : 19-sept-23 de 12-43 à 13:46 GAZPRELEVE SEC Volume ligne dérivée 0,195 Nm³ sec Diamètre de buse (mm) : 6,03 mm Température de la canne : 1111,0 (°C) Température du filtre : 110,0 (°C) Température du filtre : 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc de barboteurs 0 mg CT /1 mg CT /	INSTALLATION:	Ligne d'incinération					
GAZPRELEVE SEC Volume ligne dérivée 0,195 Nm³ sec Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du filtre: 110,0 (°C) Température du filtre: 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs 0 mg Cr // Wolume du blanc de barboteurs 0,000 mg Cr // Masse dans le blanc de barboteurs 0,000 mg Cr // Masse dans le blanc de barboteurs 0,000 mg Cr // Masse dans le blanc de barboteurs 0,000 mg Cr // Masse dans le blanc de barboteurs 0,000 mg Cr // Masse dans le blanc de barboteurs 0,000 mg Cr // Masse dans le blanc de barboteurs 0,000 mg Cr // Volume du blanc de la solution du barboteur 1 E2 Cl // Volume du blanc de la solution du barboteur 2 0 mg Cr // Volume ajusté de la solution du barboteur 2 0 mg Cr // Volume ajusté de la solution du barboteur 2 0 mg Cr // Rendement barbotage 100,0% Masse prélevée 0,35 mg HCl Concentration prélèvement 2 0,74 mg HCl /Nm² sec 4,34 mg HCl /Nm² sec 6 mg HCl/Nm² sec 7 mg HCl /Nm² sec 8 mg HCl /Nm² sec 8 mg HCl /Nm² sec 9 mg HCl/Nm² sec 9 mg HCl/Nm² sec 9 mg HCl/Nm² sec 9 mg HCl/Nm² sec 8 mg HCl/Nm² sec 9	ESSAI Nº	: E2 CI					
GAZPRELEVE SEC Volume ligne dérivée Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du filtre: 110,0 (°C) Température du filtre: 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs 0 mg Cr /l Volume du blanc de barboteurs 0,000 mg Cr Masse dans le blanc de barboteurs 0,000 mg Cr Masse dans le blanc de barboteurs 0,000 mg Cr Masse dans le blanc de barboteurs 0,000 mg Cr Masse dans le blanc de barboteurs 0,000 mg Cr CONCENTRATION EN HCL Identification du Barboteur 1 Identification de la solution du barboteur 2 0 Concentration de la solution du barboteur 2 0 Concentration de la solution du barboteur 2 0 mg Cr /l Volume ajusté de la solution du barboteur 2 0 mg Cr /l Volume ajusté de la solution du barboteur 2 0 mg Cr /l Volume ajusté de la solution du barboteur 2 0 mg Cr /l Volume ajusté de la solution du barboteur 2 0 mg Cr /l Rendement barbotage Masse prélevée 0,35 mg HCl Concentration retenue 2,419 4,9,35 mg HCl / Nm² sec Conforme Concentration blanc de prélèvement 2,2ref Rapport Blanc /VLE Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchété Débit de prélèvement fin (//min) 0,01 Debit de prélèvement fin (//min) 0,01 Debit de fuite febut (//min) 0,01 Debit de fuite fin (//min) 0,01 Unidiation test de fuite début (//min) 0,01		Date et horaires de mesurage :	19-sept-23	de	12:43	à	13:46
Volume ligne dérivée 0,195 Nm³ sec							
Diamètre de buse (mm): 6,03 mm Température de la canne: 1111,0 (°C) Température du filtre: 110,0 (°C) Température du filtre: 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc de barboteurs (mm): 10,000 mg Cr Masse dans le blanc de barboteurs (mm): 10,000 mg Cr Masse dans le blanc de barboteurs (mm): 10,000 mg Cr Masse dans le blanc de barboteurs (mm): 10,000 mg Cr Masse dans le blanc de barboteurs (mm): 12,000 mg Cr Masse dans le blanc de barboteurs (mm): 12,000 mg Cr Masse dans le blanc de barboteur 1 (mm): 10,000 mg Cr Masse dans le blanc de barboteur 1 (mm): 10,000 mg Cr ///////////////////////////////////	GAZ PRELEVE SE		0.105	Nm3 and			
Température de la canne : 1111,0 (°C) Température du filtre : 110,0 (°C) Température du filtre : 110,0 (°C) CONCENTRATION DU BLANC Concentration du blanc de barboteurs 0 mg Cr // 0 mg		2000 1000 000 000 000 000 000 000 000 00					
Température du filtre : 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc E1 BCI (Blanc)		Diamètre de buse (mm) :	6,03	mm			
CONCENTRATION DU BLANC Concentration du blanc de barboteurs 0 mg Cr /l 0 mg		Température de la canne :	111,0	(°C)			
Concentration du blanc de barboteurs Volume du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc de barboteurs 0,000 mg Cl' Masse dans le blanc de barboteurs 0,000 mg Cl' Masse dans le blanc de barboteurs 0,000 mg HCl CONCENTRATION EN HCL Identification du Barboteur 1 Identification du Barboteur 2 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,35 mg HCl Concentration prélèvement à 0 _x ref 3,418 Concentration prélèvement à 0 _x ref Blanc de prélèvement Concentration blanc de prélèvement a 0 _x ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Validation text de fuite début (l/min) Validation text de fuite début (l/min) Validation text de fuite debut (l/min)		Température du filtre :	110,0	(°C)			
Concentration du blanc de barboteurs 0 mg Cr /l							
Concentration du blanc de barboteurs Volume du blanc de barboteurs Wasse dans le blanc de barboteurs Masse dans le blanc de barboteurs 0,000 mg Cl' mg HCl CONCENTRATION EN HCL Identification du Barboteur 1 Identification du Barboteur 2 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,35 mg HCl Concentration prélèvement à 0 _x ref 3,418 Concentration prélèvement à 0 _x ref Blanc de prélèvement Concentration blanc de prélèvement a 0 _x ref Blanc de prélèvement a 0 _x ref Concentration blanc de prélèvement a 0 _x ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) O JOI Validation text de fuite début O	CONCENTRATION						
Volume du blanc de barboteurs 0 ml		Identification du Blanc	E1 BCI (Blanc)				
Masse dans le blanc de barboteurs Masse dans le blanc de barboteurs Masse dans le blanc de barboteurs 0,000 mg Cl' mg HCl CONCENTRATION EN HCL Identification du Barboteur 1 Identification du Barboteur 2 Identification du barboteur 1 Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,35 mg HCl Concentration retenue Goncentration prélèvement à O ₂ ref 3,418 Blanc de prélèvement 0 mg HCl/Nm³ sec conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de prélèvement fin (l/min) Uvalidation test de fuite début Vulaidation test de foute début Vulaidation test de fuite début Vulaidation test de fui							
Masse dans le blanc de barboteurs O,000 mg HCl CONCENTRATION EN HCL Identification du Barboteur 1 Identification du Barboteur 2 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée O,35 mg HCl Concentration retenue Concentration prélèvement à 0_zref 3,418 Blanc de prélèvement Concentration blanc de prélèvement à 0_zref Rapport Blanc /VLE Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (//min) Débit de prélèvement fin (//min) Débit de fuite début (//min) Débit de fuite début (//min) Validation test de fuite début O CONCENTRATION E2 CI B2 CI B3 mg Cl' // ml ### ### ###########################							
Concentration du Barboteur 1 E2 Cl Identification du Barboteur 2 0 Concentration de la solution du barboteur 1 1,63 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 ml Rendement barbotage 100,0% Masse prélevée 0,35 mg HCl Concentration retenue 1,81 ± 0,17 mg HCl / Nm² sec Concentration prélèvement à O₂ref 2,412 ± 0,35 mg HCl / Nm² sec Goncentration blanc de prélèvement à O₂ref 0,000 mg HCl/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg HCl/Nm³ sec Conforme			(A)				
Identification du Barboteur 1 E2 Cl Identification du Barboteur 2 0 Concentration de la solution du barboteur 1 1,63 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 mg Cl' /l Volume ajusté de la solution du barboteur 2 0 ml Rendement barbotage 100,0% Masse prélevée 0,35 mg HCl Masse prélevée 0,35 mg HCl Concentration retenue 1,81 ± 0,17 mg HCl / Nm³ sec Concentration prélèvement à O ₂ ref 3,418 ± 0,35 mg HCl / Nm³ sec Blanc de prélèvement 0 mg HCl/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 mg HCl/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 mg HCl/Nm³ sec Conforme		Masse dans le blanc de barboteurs	0,000	mg HCI			
Concentration de la solution du barboteur 1 1,63 mg CF /l	CONCENTRATION	EN HCL					
Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,35 mg HCl Concentration retenue Goncentration prélèvement à O ₂ ref Blanc de prélèvement à O ₂ ref Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement fin (//min) Débit de fuite fiul (//min) Débit de fuite début (//min) Validation test de fuite début (//min) Validation test de fuite fin (//min) Validation test de fuite début (//min) Validation test de fuite fin (//min) Validation test de fuite fin (//min) Validation test de fuite début (//min) Validation test de fuite fin (//min)							
Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée O,35 Mg HCl Concentration retenue Concentration prélèvement à O ₂ ref Aj418 Blanc de prélèvement 0 Blanc de prélèvement 0 Goncentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Débit de fuite fin (l/min) Validation test de fuite début Q/min) Validation test de fuite début Q/min		Identification du Barboteur 2	0				
Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Rendement barbotage Masse prélevée 0,35 mg HCl Concentration retenue Concentration prélèvement à O ₂ ref 3,418 Blanc de prélèvement 0 mg HCl/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 mg HCl/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 mg HCl/Nm³ sec Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite fin (l/min) Débit de fuite fin (l/min) Débit de fuite fin (l/min) Validation test de fuite début (l/min) Validation test de fuite début (D	Co	oncentration de la solution du barboteur 1	1.63	ma Cl ⁻ /I			
Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,35 mg HCl			C-3900000				
Rendement barbotage 100,0% Masse prélevée 0,35 mg HCl Concentration retenue 1,81 ± 0,17 mg HCl / Nm³ sec Concentration prélèvement à O₂ref 3,419 ± 0,35 mg HCl / Nm³ sec Blanc de prélèvement 0 mg HCl/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg HCl/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,5 Débit de prélèvement fin (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation test de fuite début Q	Co	oncentration de la solution du barboteur 2	0	mg Cl ⁻ /l			
Concentration retenue Concentration prélèvement à O _z ref Blanc de prélèvement 0 mg HCI/Nm³ sec Concentration blanc de prélèvement à O ₂ ref Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement fin (l/min) Débit de fuite début (l/min) Débit de fuite fin (l/min) Débit de fuite fin (l/min) Uvalidation toet de fuite début O num HCI/Nm³ sec Conforme 1,81 ± 0,17 mg HCI / Nm³ sec mg HCI/Nm³ sec Conforme Conforme Conforme	V	olume ajusté de la solution du barboteur 2		ml			
Concentration retenue Concentration prélèvement à O ₂ ref Blanc de prélèvement O mg HCI/Nm³ sec Concentration blanc de prélèvement à O ₂ ref O,000 mg HCI/Nm³ sec Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Validation toet de fuite début Le 0,35 mg HCI / Nm³ sec Tmg HCI / Nm³ sec **D,35 mg HCI / Nm³ sec **D,000 mg HCI/Nm³ sec Conforme Conforme		Rendement barbotage	100,0%				
Blanc de prélèvement O mg HCl/Nm³ sec Concentration blanc de prélèvement à O₂ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite fin (l/min) Validation toet de fuite début O mg HCl/Nm³ sec mg HCl/Nm³ sec Conforme (k=2)		Masse prélevée	0,35	mg HCl			
Blanc de prélèvement O mg HCl/Nm³ sec Concentration blanc de prélèvement à O₂ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite fin (l/min) Validation toet de fuite début O mg HCl/Nm³ sec mg HCl/Nm³ sec Conforme Conforme		Concentration retenue	1.81	± 0.17 mg HCl / Nm³ sec			
Concentration blanc de prélèvement à O ₂ ref 0,000 mg HCl/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,5 Débit de fuite début (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation tost de fuite début							
Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Débit de fuite fin (l/min) O,01 Validation tost de fuite début		Blanc de prélèvement	0	mg HCI/Nm ³ sec			
Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Débit de fuite fin (l/min) O,01 Validation tost de fuite début	C						
Test étanchéité Débit de prélèvement début (I/min) 3,5 Débit de prélèvement fin (I/min) 3,5 Débit de fuite début (I/min) 0,01 Débit de fuite fin (I/min) 0,01 Validation tost de fuite début		Rapport Blanc /VLE	0%	Conforme			
Débit de prélèvement début (I/min) Débit de prélèvement fin (I/min) Débit de fuite début (I/min) Débit de fuite fin (I/min) O,01 Validation toet de fuite début		Les incertitudes sont données pour un inte	rvalle de confiance	de 95% (k=2)			
Débit de prélèvement début (I/min) Débit de prélèvement fin (I/min) Débit de fuite début (I/min) Débit de fuite fin (I/min) Validation tost de fuite début		Test étanchéité		30 0000			
Débit de prélèvement fin (I/min) 3,5 Débit de fuite début (I/min) 0,01 Débit de fuite fin (I/min) 0,01 Validation test de fuite début 0		200000000000000000000000000000000000000					
Débit de fuite début (I/min) 0,01 Débit de fuite fin (I/min) 0,01 Validation test de fuite début 0							
Débit de fuite fin (I/min) 0,01 Validation test de fuite début							
Validation test de fuite début							

irh conseil

VALIDATION DE LA LQ PAR RAPPORT A LA VLE

SITE: SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI N° : E2
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)		LQ/VLE (%)	Conformité (< 20 %VLE)
HCI	10	mg/Nm3 sec	0,195	0,419	4,2	Conforme

MEMORE II ANIBE CICLO						
SITE :	SAVE Cornillé					
INSTALLATION:	Ligne d'incinération					
ESSAI N°	: E3 CI					
		40	104.00			
	Date et horaires de mesurage :	19-sept-23	de	13:55	à	14:58
GAZ PRELEVE SE	C					
	Volume ligne dérivée	0,203	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	Température du filtre :	110,0	(°C)			
CONCENTRATION	DU BLANC					
	Identification du Blanc	E1 BCI (Blanc)				
	Concentration du blanc de barboteurs	0	mg Cl ⁻ /l			
	Volume du blanc de barboteurs	0	ml			
	Masse dans le blanc de barboteurs	0,000	mg Cl*			
	Masse dans le blanc de barboteurs	0,000	mg HCl			
CONCENTRATION	EN HCL					
	Identification du Barboteur 1	E3 CI				
	Identification du Barboteur 2	0				
Co	oncentration de la solution du barboteur 1	1,64	mg Cl ⁻ /l			
V	olume ajusté de la solution du barboteur 1	206	ml			
	oncentration de la solution du barboteur 2	0	mg Cl ⁻ /l			
Ve	olume ajusté de la solution du barboteur 2	0 100,0%	mi			
	Rendement barbotage	100,076				
	Masse prélevée	0,35	mg HCl			
	Concentration retenue Concentration prélèvement à O₂ref	1,71 3,229	± 0,16 mg HCl / Nm³ sec ± 0,33 mg HCl / Nm³ sec			
	Blanc de prélèvement	0	mg HCl/Nm ³ sec			
C	oncentration blanc de prélèvement à O ₂ ref	0,000	mg HCI/Nm³ sec			
	Rapport Blanc /VLE	0%	Conforme			
	Les incertitudes sont données pour un inte	ervalle de confiance	e de 95% (k=2)			
	Test étanchéité	7.5	T			
	Débit de prélèvement début (I/min)	3,6				
	Débit de prélèvement fin (l/min) Débit de fuite début (l/min)	3,6 0,01	-			
	Débit de fuite debut (I/min) Débit de fuite fin (I/min)	0,01	-			
	Validation test de fuite début	0				
	Validation test de fuite fin	0				

irh ingénieur

VALIDATION DE LA LQ PAR RAPPORT A LA VLE

SITE : SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI Nº : Date 19/09/23

Composé	VLE	Unités	fraction gaz (Nm3 sec)		LQ/VLE (%)	Conformité (< 20 %VLE)
HCI	10	mg/Nm3 sec	0,203	0,394	3,9	Conforme

SITE :	SAVE Cornillé					
INSTALLATION	: Ligne d'incinération					
ESSAI N°		E1 S				
	Date et horaires de mesurage :	19-sept-23	de	11:26	à	12:29
GAZ PRELEVE S	SEC					
	Volume ligne dérivée	0,177	Nm³ sec			
	-					
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	Température du filtre :	110,0	(°C)			
			2000			
CONCENTRATIO	ON DU BLANC					
	Identification du Blanc	E1 BS (Blanc)				
	Concentration du blanc de barboteurs	0,00	mg SO4 ²⁻ /I			
	Volume du blanc de barboteurs	0	ml			
	Masse dans le blanc de barboteurs	0,000	mg SO4 ²⁻			
	Masse dans le blanc de barboteurs	0,00	mg SO2			
CONCENTRATIO	ON EN SO2					
CONCENTRATIO	Identification du Barboteur 1	E1 S (B1)				
	Identification du Barboteur 2	E1 S (B2)				
0	oncentration de la solution du barboteur 1	E 24	mg SO4 ²⁻ /I			
	olume ajusté de la solution du barboteur 1	5,24 90,5	mg 504 71			
	oncentration de la solution du barboteur 2	0,1	mg SO4 ²⁻ /I			
	olume ajusté de la solution du barboteur 2	84	ml			
	Rendement barbotage	98,3%				
	Masse prélevée	0,32	mg SO2			
	Concentration retenue	1,82	± 0,41 mg SO2 / Nm³ sec			
	Concentration prélèvement à O ₂ ref	3,439	± 0,82 mg SO2 / Nm³ sec			
			5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
	Blanc de prélèvement		mg SO2/Nm³ sec			
С	oncentration blanc de prélèvement à O ₂ ref	0,000	mg SO2/Nm³ sec			
	Rapport Blanc /VLE	0%	Conforme			
	Les incertitudes sont données pour un int	ervalle de confiar	nce de 95% (k=2)			
	Test étanchéité		_			
	Débit de prélèvement début (l/min)	3,2				
	Débit de prélèvement fin (l/min)	3,2				
	Débit de fuite début (I/min)	0,01				
	Débit de fuite fin (l/min)	0,01	-			
	Validation test de fuite début	0				
E/PMC/AIR/11 rev37	Validation test de fuite fin	0				

SITE: SAVE Comillé INSTALLATION: Ligne d'incinération

ESSAI N° : E1
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)	Volume prélevé fraction part (Nm3 sec)	LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 %VLE)
Compose							
SO ₂	50	mg/Nm3 sec	0,177		0,248	0,5	Conforme

SITE :	SAVE Cornillé					
INSTALLATION	: Ligne d'incinération					
ESSAI Nº	:	E2 S				
	Date et horaires de mesurage :	19-sept-23	de	12:43	à	13:46
GAZ PRELEVE S	SEC					
	Volume ligne dérivée	0,174	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	Température du filtre :	110,0	(°C)			
CONCENTRATION	ON DU BLANC					
CONCEANAN	Identification du Blanc	E1 BS (Blanc)				
	Concentration du blanc de barboteurs	0,00	mg SO4 ²⁻ /I			
	Volume du blanc de barboteurs	0	ml			
	Masse dans le blanc de barboteurs Masse dans le blanc de barboteurs	0,000	mg SO4 ²⁻ mg SO2			
CONCENTRATION		F.C. C.				
	Identification du Barboteur 1 Identification du Barboteur 2	E2 S				
C	oncentration de la solution du barboteur 1	10,2	mg SO4 ²⁻ /I			
	olume ajusté de la solution du barboteur 1	195	ml ml			
	oncentration de la solution du barboteur 2	0	mg 504 ²⁻ /I			
	olume ajusté de la solution du barboteur 2	0	ml			
	Rendement barbotage	100,0%				
	Masse prélevée	1,33	mg SO2			
	iwasse preiewee	1,33	111g 302			
	Concentration retenue	7,62	± 1,73 mg SO2 / Nm³ sec	Incertitude	supérieure	à NFX 43 551
	Concentration prélèvement à O ₂ ref	14,377	± 3,47 mg SO2 / Nm³ sec			
	Blanc de prélèvement	7	mg SO2/Nm³ sec			
	oncentration blanc de prélèvement à O ₂ ref	0,000	mg SO2/Nm ³ sec			
	Rapport Blanc /VLE	0%	Conforme			
	Les incertitudes sont données pour un int	35,55	SERVICE DE CONTROL DE			
	Est inventioned von defineds pour un int	cuno de conila	= vv /v /v =/			
	Test étanchéité					
	Débit de prélèvement début (I/min)	3,1				
	Débit de prélèvement fin (l/min)	3,1				
	Débit de fuite début (l/min)	0,01				
	Débit de fuite fin (l/min)	0,01				
	Validation test de fuite début	0				
	Validation test de fuite fin	0				

SITE : SAVE Cornillé INSTALLATION : Ligne d'incinération

ESSAI N° : E2 Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)		LQ/VLE (%)	Conformité (< 20 % VLE)
SO ₂	50	mg/Nm3 sec	0,174	 0,282	0,6	Conforme

SITE :	SAVE Cornillé					
INSTALLATION	: Ligne d'incinération					
ESSAI N°		E3 S				
	Date et horaires de mesurage :	19-sept-23	de	13:55	à	14:58
GAZ PRELEVE S	EC					
	Volume ligne dérivée	0,167	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
		2-1/20/01/01				
	Température de la canne :	111,0	(°C)			
	Température du filtre :	110,0	(°C)			
001105115545	NI DII DI ANO					
CONCENTRATIO	Identification du Blanc	E1 BS (Blanc)				
		Contractors.	2042: 11			
	Concentration du blanc de barboteurs Volume du blanc de barboteurs	0,00	mg SO4 ²⁻ /I			
	Masse dans le blanc de barboteurs	0,000	mg SO4 ²⁻			
	Masse dans le blanc de barboteurs	0,00	mg SO2			
CONCENTRATIO	ON EN SO2					
	Identification du Barboteur 1	E3S				
	Identification du Barboteur 2	0				
Co	oncentration de la solution du barboteur 1	8,01	mg SO4 ²⁻ /I			
Vo	olume ajusté de la solution du barboteur 1	191	ml			
	oncentration de la solution du barboteur 2	0	mg 804 ²⁻ /I			
Vo	olume ajusté de la solution du barboteur 2	0	ml			
	Rendement barbotage	100,0%				
	Masse prélevée	1,02	mg SO2			
					4.4	1 150 10 551
	Concentration retenue Concentration prélèvement à O ₂ ref	6,11 11,529	± 1,39 mg SO2 / Nm³ sec ± 2,78 mg SO2 / Nm³ sec	Incertitude	superieure	à NFX 43 551
	Concentiation protocontains a Cycl	11,020	- 1,10 mg 001, mm 000			
	Blanc de prélèvement		mg SO2/Nm³ sec			
Co	oncentration blanc de prélèvement à O ₂ ref	0,000	mg SO2/Nm ³ sec			
	Rapport Blanc /VLE	0%	Conforme			
	Les incertitudes sont données pour un int	ervalle de confia	nce de 95% (k=2)			
	Test étanchéité		1			
	Débit de prélèvement début (l/min) Débit de prélèvement fin (l/min)	3	_			
	Débit de fuite début (l/min)	0,01				
	Débit de fuite fin (l/min)	0,01				
	Validation test de fuite début	0				
	Validation test de fuite fin	0				

SITE : SAVE Comillé INSTALLATION : Ligne d'incinération

ESSAI N° : E3
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)	Volume prélevé fraction part (Nm3 sec)	LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 % VLE)
Composi							
SO ₂	50	mg/Nm3 sec	0,167		0,288	0,6	Conforme

SITE :	SAVE Cornillé					
NSTALLATION	Ligne d'incinération					
ESSAI N° :		E1 NH				
	Date et horaire de mesurage :	19-sept-23	de	11:26	à	12:29
GAZ PRELEVE S	SEC					
	Volume ligne dérivée	0,185	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	PAGE PAGE AND					
	Température du filtre :	110,0	(°C)			
CONCENTRATION	ON DU BLANC					
- SHOEM INAIN	Identification du Blanc	E1 B NH (Blanc)				
	Concentration du blanc de barboteurs	0	mg NH4 ⁺ /I			
	Volume du blanc de barboteurs	0	ml ml			
	Masse dans le blanc de barboteurs	0,000	mg NH3			
CONCENTRATIO	ON EN NH3					
CONCENTRATIO	Identification du Barboteur 1	E1 NH (B1)				
	Identification du Barboteur 2	E1 NH (B2)				
Cor	ncentration de la solution du barboteur 1	27	mg NH4 ⁺ /I			
Vol	lume ajusté de la solution du barboteur 1	78,8	ml			
Cor	ncentration de la solution du barboteur 2	0,31	mg NH4 +/I			
Vol	lume ajusté de la solution du barboteur 2	98	ml			
	Rendement barbotage	98,6%				
	Masse prélevée	2,04	mg NH3			
	Concentration retenue Concentration prélèvement à O₂ref	11,04 20,828	± 1,99 mg NH3 / Nm³ sec ± 3,99 mg NH3 / Nm³ sec			
	Blanc de prélèvement	0	mg NH3/Nm³ sec			
Co	ncentration blanc de prélèvement à O ₂ ref	0,000	mg NH3/Nm³ sec			
	Rapport Blanc /VLE	0%	Conforme			
	Les incertitudes sont données pour un inf	tervalle de confiance	e de 95% (k=2)			
	Took éta-ah été		1			
	Test étanchéité					
	Débit de prélèvement début (l/min)	3,2				
	Débit de prélèvement fin (l/min)	3,2				
	Débit de fuite début (l/min)	0,01	-			
	Débit de fuite fin (l/min) Validation test de fuite début	0,01 O	-			
	Validation test de fuite debut	0				
			-			E/PMC/AIR/11 rev

SITE : SAVE Cornillé INSTALLATION : Ligne d'incinération

ESSAI N° : E1
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)	LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 %VLE)
NH ₃	30	mg/Nm3 sec	0,185	0,085	0,3	Conforme

VALIDATION DE LA LQ PAR RAPPORT A LA VLE

NSTALLATION ESSAI N°: Date et horaire de mesurage : 19-sept.23 de 12:43 à 13:46 GAZ PRELEVE SEC Volume ligne dérinde Diamètre de buse (mm) : 6,03 mm Température du filtre : 111,0 (°C) Température du filtre : 110,0 (°C) Température du filtre : 110,0 (°C) CONCENTRATION DU BLANC Lidentification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs 0 mg NH4 */I mi Identification du Barboteur 1 (blanc) CONCENTRATION EN NH3 Identification du Barboteur 1 (blanc) CONCENTRATION EN NH3 Concentration de la solution du barboteur 1 (blanc) Concentration de la solution du barboteur 2 0 mg NH4 */I	n manager an in						
ESSAIN*: Date et horaire de mesurage: 19-sept-23 de 12:43 13:46 GAZ PRELEVE SEC Volume ligne dérivée Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du filtre: 110,0 (°C) Température du blanc de barboteurs Volume du blanc de barboteurs O mg NH4 */I identification du Barboteur 1 Volume ajusté de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Nasse entration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Nasse prélevée O,34 Masse prélevée O,000 Masse p	SITE :	SAVE Cornillé					
Date et horaire de mesurage : 19-sept-23 de 12:43 à 13:46 GAZ PRELEVE SEC Volume ligne dérivée 0,184 Nm² sec Diamètre de buse (mm) : 6,03 mm Température de la canne : 111,0 (°C) Température de litre : 110,0 (°C) Température du filtre : 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc de barboteurs Volume du blanc de barboteurs Volume du blanc de barboteurs 0 mg NH4 */I ml	NSTALLATION	Lighe d incineration					
SAZ PRELEVE SEC Volume ligne dérivée Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (*C) Température de litre: 110,0 (*C) Température du filtre: 110,0 (*C) CONCENTRATION DU BLANC Identification du Blanc Volume du blanc de barboteurs Volume du blanc de barboteurs Volume du blanc de barboteurs 0,000 mg NH-4*/I Masse dans le blanc de barboteurs 0,000 mg NH-3 CONCENTRATION EN NH3 Identification du Barboteur 1 Identification du Barboteur 2 0 Concentration de la solution du barboteur 2 0 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 0 Concentration de la solution du barboteur 2 0 Concentration de la solution du barboteur 2 0 Concentration de la solution du barboteur 2 0 Mg NH-4*/I Volume ajusté de la solution du barboteur 2 0 mg NH-4*/I Volume ajusté de la solution du barboteur 2 0 mg NH-3 Concentration retenue Concentration prélèvement a O ₂ ref 9,618 Concentration blanc de prélèvement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ESSAI Nº		E2 NH				
Volume ligne dérivée Diamètre de buse (mm): 6,03 mm Température de la canne: 111.0 (*C) Température du filtre: 110.0 (*C) Température du filtre: 110.0 (*C) Température du filtre: 110.0 (*C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs 0 mg NH4 *// mil mg NH3 CONCENTRATION EN NH3 CONCENTRATION EN NH3 CONCENTRATION EN ON HIS Identification du Barboteur 1 Identification du Barboteur 2 Identification du Barboteur 2 0 mg NH4 *// Wolume ajusté de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 0 mg NH4 *// Wolume ajusté de la solution du barboteur 2 0 mg NH4 *// Wolume ajusté de la solution du barboteur 2 0 mg NH4 *// Wolume ajusté de la solution du barboteur 2 0 mg NH4 *// mil mil mal mal mal mal mal mal mal mal mal ma		Date et horaire de mesurage :	19-sept-23	de	12:43	à	13:46
Diamètre de buse (mm): 6,03 mm Température du fitre: 1110,0 (°C) Température du fitre: 1110,0 (°C) Température du fitre: 1110,0 (°C) CONCENTRATION DU BLANC Identification du blanc de barboteurs 0 mg N+4 */I mg N+3 Volume du blanc de barboteurs 0 mg N+4 */I mg N+3 CONCENTRATION EN NH3 Identification du Barboteur 1 (bientification du Barboteur 1 (bientification du Barboteur 2 0 mg N+3 CONCENTRATION EN NH3 Identification du Barboteur 1 203 ml mg N+4 */I volume ajusté de la solution du barboteur 2 0 mg N+4 */I mg N+4	GAZ PRELEVE S	SEC					
Température du filtre : 111,0 (°C) Température du filtre : 1110,0 (°C) Température du filtre : 1110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc E1 B NH (Blanc) mg NH4 */ mg NH3		Volume ligne dérivée	0,184	Nm³ sec			
Température du filtre : 110,0 (°C) CONCENTRATION DU BLANC Identification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs 0 mg NH4 */I Masse dans le blanc de barboteurs 0,000 mg NH3 CONCENTRATION EN NH3 Identification du Barboteur 1 Identification du Barboteur 2 0 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 1 2 Volume ajusté de la solution du barboteur 2 0 mg NH4 */I Volume ajusté de la solution du barboteur 2 0 mg NH4 */I Volume ajusté de la solution du barboteur 2 0 mg NH4 */I Volume ajusté de la solution du barboteur 2 0 mg NH3 Concentration de la solution du barboteur 2 0 mg NH4 */I Wolume ajusté de la solution du barboteur 2 0 mg NH3 */I Concentration perievement a 0,34 mg NH3 Concentration referue Concentration prélèvement à 0,34 mg NH3 / Nm² sec 2 1,87 mg NH3 / Nm² sec Concentration prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec Concentration blanc de prélèvement à 0,74 gf 0,000 mg NH3/Nm² sec		Diamètre de buse (mm) :	6,03	mm			
CONCENTRATION DU BLANC Identification du Blanc de barboteurs Volume du blanc de barboteurs Volume du blanc de barboteurs Nasse dans le blanc de barboteurs Masse dans le blanc de barboteurs CONCENTRATION EN NH3 Identification du Barboteur 1 Identification du Barboteur 2 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 On mil Concentration de la solution du barboteur 2 On mil Concentration de la solution du barboteur 2 On mil Concentration de la solution du barboteur 2 On mil Rendement barbotage Masse prélevée O,94 Mg NH4 */I Volume ajusté de la solution du barboteur 2 O mil Rendement barbotage Concentration retenue Concentration prélèvement à O ₂ ref 9,618 ### 1,93 mg NH3 / Nm² sec ± 1,87 mg NH3 / Nm² sec ± 1,87 mg NH3 / Nm² sec *### 2,93 mg NH3 / Nm		Température de la canne :	111,0	(°C)			
Identification du Blanc Concentration du blanc de barboteurs O mg NH4 */I mg NH3		Température du filtre :	110,0	(°C)			
Identification du Blanc Concentration du blanc de barboteurs O mg NH4 */I mg NH3							
Concentration du blanc de barboteurs Volume du blanc de barboteurs Nasse dans le blanc de barboteurs Nasse dans le blanc de barboteurs Nasse dans le blanc de barboteurs Noulme alusté de la solution du Barboteur 1 Concentration de la solution du barboteur 2 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Nasse prélevée Nasse prélevée Nasse prélevée Nasse prélevée Concentration retenue Concentration retenue Concentration prélèvement à O₂ref Blanc de prélèvement 2 Blanc de prélèvement 0 Mg NH3 / Nm³ sec ± 1,87 mg NH3 / Nm³ sec ± 1,87 mg NH3 / Nm³ sec mg NH3/Nm³ sec mg NH3/Nm³ sec mg NH3/Nm³ sec Concentration blanc de prélèvement 1 Nasse prélevée Les incertitudes sont données pour un intervelle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement fin (/min) Débit de prélèvement fin (/min) Nalidation test de luite début (/min) Validation test de luite fin (/min) Validation test de luite début (/min) Validation test de luite difen (/min) Validation test de luite début (/min)	CONCENTRATION		E4 D MLI /Diana				
Volume du blanc de barboteurs Masse dans le blanc de barboteurs 0,000 mg NH3 CONCENTRATION EN NH3 Identification du Barboteur 1 Identification du Barboteur 2 0 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,94 Masse prélevée 2 Concentration retenue Concentration prélèvement à O ₂ ref 9,618 ± 0,93 mg NH3 / Nm³ sec ± 1,87 mg NH3 / Nm³ sec 2 t,187 mg NH3 / Nm³ sec Conforme Concentration blanc de prélèvement à O ₂ ref 0,000 Mg NH3 Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement ébut (l/min) 0,01 Validation test de fuite début 0 Validation test de fuite fin 0		identification du Bianc	E1 B NH (Blanc)				
Volume du blanc de barboteurs Masse dans le blanc de barboteurs 0,000 mg NH3 CONCENTRATION EN NH3 Identification du Barboteur 1 Identification du Barboteur 2 0 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,94 Masse prélevée 2 Concentration retenue Concentration prélèvement à O ₂ ref 9,618 ± 0,93 mg NH3 / Nm³ sec ± 1,87 mg NH3 / Nm³ sec 2 t,187 mg NH3 / Nm³ sec Conforme Concentration blanc de prélèvement à O ₂ ref 0,000 Mg NH3 Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement ébut (l/min) 0,01 Validation test de fuite début 0 Validation test de fuite fin 0		Concentration du blanc de barboteurs	0	mg NH4 +/I			
CONCENTRATION EN NH3 Identification du Barboteur 1 Identification du Barboteur 2 Concentration de la solution du barboteur 1 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,94 Mg NH3 Concentration retenue Concentration prélèvement a O₂ref P,618 Blanc de prélèvement a O₂ref Rapport Blanc /VLE Concentration blanc de prélèvement a O₂ref Rapport Blanc /VLE Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement fin (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Validation test de fuite début Validation test de fuite fin (V				100.7			
Identification du Barboteur 1 Identification du Barboteur 2 0			0,000				
Identification du Barboteur 1 Identification du Barboteur 2 0							
Identification du Barboteur 2 O	CONCENTRATION		Name of the Owner				
Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée O,94 Mg NH3 Concentration retenue Concentration prélèvement à O ₂ ref 9,618 Blanc de prélèvement 0 Mg NH3/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 Rapport Blanc /VLE Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement fin (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Validation test de fuite début Validation test de fuite dibut (l/min) Validation test de fuite dibut (l/min) Validation test de fuite fin (l/min) Validation test de fuite dibut (l/min)							
Concentration de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,94 mg NH3 Concentration retenue Concentration prélèvement à O ₂ ref Blanc de prélèvement Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance Test étanchéité Débit de prélèvement début (//min) Débit de fuite fibout (//min) Validation test de fuite début Débit de fuite début (//min) Validation test de fuite début Validation test de fuite début Validation test de fuite début Débit de fuite début (//min) Validation test de fuite début Validation test de fuite début Débit de fuite début (//min) Validation test de fuite diébut O MR NH3 / Nm³ sec ± 1,87 mg NH3 / Nm³ sec mg NH3/Nm³ sec Conforme Conforme Conforme	Cor	ncentration de la solution du barboteur 1	4,9	mg NH4 ⁺ /I			
Volume ajusté de la solution du barboteur 2 Rendement barbotage Masse prélevée 0,94 mg NH3 Concentration retenue Concentration prélèvement à O ₂ ref 9,618 Blanc de prélèvement 0 mg NH3/Nm³ sec mg NH3/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Débit de fuite fin (l/min) Validation test de fuite début	Vo	lume ajusté de la solution du barboteur 1	203	ml			
Masse prélevée 0,94 mg NH3 Concentration retenue 5,10 ± 0,93 mg NH3 / Nm³ sec Concentration prélèvement à O₂ref 9,618 ± 1,87 mg NH3 / Nm³ sec Blanc de prélèvement 0 mg NH3/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg NH3/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,2 Débit de prélèvement fin (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation test de fuite début O Validation test de fuite fin O	Cor	ncentration de la solution du barboteur 2	0	mg NH4 */I			
Masse prélevée 0,94 mg NH3 Concentration retenue 5,10 ± 0,93 mg NH3 / Nm³ sec Concentration prélèvement à O₂ref 9,618 ± 1,87 mg NH3 / Nm³ sec Blanc de prélèvement 0 mg NH3/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg NH3/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,2 Débit de prélèvement fin (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation test de fuite début O Validation test de fuite début O Validation test de fuite début (l/min) O	Vo	lume ajusté de la solution du barboteur 2	0	ml			
Concentration retenue Concentration prélèvement à O₂ref Blanc de prélèvement O Blanc de pr		Rendement barbotage	100,0%				
Concentration retenue Concentration prélèvement à O₂ref Blanc de prélèvement O Blanc de pr		Massa auticida	0.04	NII 12			
Concentration prélèvement à O₂ref Blanc de prélèvement O mg NH3/Nm³ sec Concentration blanc de prélèvement à O₂ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de prélèvement fin (l/min) Débit de fuite début (l/min) O 01 Validation test de fuite début Validation test de fuite début O 07 Validation test de fuite début O 07 Validation test de fuite fin O 07 Test 1,87 mg NH3 / Nm³ sec mg NH3/Nm³ sec Conforme Conforme			0,94	mg Nn3			
Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de prélèvement fin (l/min) Débit de fuite début (l/min) O,01 Débit de fuite début (l/min) Validation test de fuite début O Validation test de fuite début O Validation test de fuite fin							
Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de prélèvement fin (l/min) Débit de fuite début (l/min) O,01 Débit de fuite début (l/min) Validation test de fuite début O Validation test de fuite début O Validation test de fuite fin		Blane de prélèsement	0	ma NH2/Nm³ scs			
Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,2 Débit de prélèvement fin (l/min) 3,2 Débit de fuite début (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation test de fuite début O Validation test de fuite début O	0-						
Test étanchéité Débit de prélèvement début (l/min) 3,2 Débit de prélèvement fin (l/min) 3,2 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O Validation test de fuite début O	Co		ANY CONTRACTOR OF THE PARTY OF				
Débit de prélèvement début (l/min) 3,2 Débit de prélèvement fin (l/min) 3,2 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O Validation test de fuite fin O		Les incertitudes sont données pour un inf	tervalle de confiance	e de 95% (k=2)			
Débit de prélèvement début (l/min) 3,2 Débit de prélèvement fin (l/min) 3,2 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O Validation test de fuite fin O		Test étanchéité					
Débit de prélèvement fin (l/min) 3,2 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O Validation test de fuite fin O			2.2				
Débit de fuite début (I/min) Débit de fuite fin (I/min) Validation test de fuite début Validation test de fuite fin O				-			
Débit de fuite fin (I/min) 0,01 Validation test de fuite début O Validation test de fuite fin O				-			
Validation test de fuite début O Validation test de fuite fin O				-			
Validation test de fuite fin				1			
E/PMC/AIR/11 rev3							

SAVE Cornillé INSTALLATION: Ligne d'incinération

ESSAI Nº : E2 19/09/23 Date

SITE :

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)	Volume prélevé fraction part (Nm3 sec)	LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 % VLE)
NH ₃	30	mg/Nm3 sec	0,184		0,098	0,3	Conforme

SITE :	SAVE Cornillé					
	Ligne d'incinération					
ESSAI N°		E3 NH				
ESSAIN		E3 INFI				
	Date et horaire de mesurage :	19-sept-23	de	13:55	à	14:58
GAZ PRELEVE S	SEC					
	Volume ligne dérivée	0,180	Nm³ sec			
	Diamètre de buse (mm) :	6,03	mm			
	Température de la canne :	111,0	(°C)			
	Température du filtre :	110,0	(°C)			
CONCENTRATION	ON DU BLANC					
	Identification du Blanc	E1 B NH (Blanc)				
	Concentration du blanc de barboteurs	0	mg NH4 ⁺ /I			
	Volume du blanc de barboteurs	0	mi			
	Masse dans le blanc de barboteurs	0,000	mg NH3			
CONCENTRATION	ON EN NH3					
	Identification du Barboteur 1 Identification du Barboteur 2	E3 NH 0				
	ncentration de la solution du barboteur 1 lume ajusté de la solution du barboteur 1	4,16 224	mg NH4 ⁺ /I			
Cor	ncentration de la solution du barboteur 2	0	mg NH4 ⁺ /I			
Vo	lume ajusté de la solution du barboteur 2 Rendement barbotage	0 100,0%	ml			
	Masse prélevée	0,88	mg NH3			
	Concentration retenue Concentration prélèvement à O ₂ ref	4,89 9,232	± 0,89 mg NH3 / Nm³ sec ± 1,79 mg NH3 / Nm³ sec			
	Blanc de prélèvement	0	mg NH3/Nm³ sec			
Co	ncentration blanc de prélèvement à O₂ref Rapport Blanc /VLE	0,000 0%	mg NH3/Nm ³ sec Conforme			
	Les incertitudes sont données pour un in	tervalle de confiance	e de 95% (k=2)			
	Test étanchéité					
	Débit de prélèvement début (l/min)	3,2				
	Débit de prélèvement fin (I/min)	3,2				
	Débit de fuite début (l/min)	0,01				
	Débit de fuite fin (l/min) Validation test de fuite début	0,01 O				
	Validation test de fuite debut Validation test de fuite fin	0				
						E/PMC/AIR/11 rev3

SITE : SAVE Comillé INSTALLATION: Ligne d'incinération

ESSAI Nº: E3 19/09/23 Date

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)	LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 %VLE)
Compose						
NH ₃	30	mg/Nm3 sec	0,180	0,111	0,4	Conforme

recrigira di Arcidia Sutoligi.						
SITE :	SAVE Cornillé					
NSTALLATION :	Ligne d'incinération	n				
ESSAI N°:		E1 F				
Date e	t horaires de mesurage :	19-sept-23	de	11:26	à	12:29
FILTRATION	t notation do incourage :	10 dopt 20		1		
	Diamètre de buse (mm) :	6.03	mm			
	empérature de la canne :	111,0	(°C)			
	in the second second		00000			
	Température du filtre :	110,0	(°C)			
	Intérieur conduit	V				
	Extérieur conduit	Х				
SOCINETISME						
	Isocinétisme	111%				
			4040			
Volume de fumées prélevé	Nm ³ sec	HF gaze 0,225				
20	IVIII SEC					
Identification du Blanc Concentration du blanc de barboteurs	mg F·/I	E1 BF (BI	anc)			
Volume du blanc de barboteurs	ml	0				
Masse dans le blanc de barboteurs	mg F ⁻ mg/Nm ³ sec	0,000				
Blanc HF gazeux	mg/Nm° sec	0,000				
Identification du Barboteur 1 Identification du Barboteur 2		E1 F (B E1 F (B				
Concentration de la solution du barboteur 1	mg F ⁻ /I	0,050				
Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2	ml mg F /l	0.000				
Volume ajusté de la solution du barboteur 2	ml	83				
Rendement barbotage		100%				
Masse de HF gazeux captée	mg	0,005				
HF gazeux	mg/Nm3 sec	0,020		± 0,022 mg HF / Nm³ sec		
Volume total prélevé	Nm ³ sec	HF particu 1,627	laire			
Identification filtre	IVIII SEC	E1 7071	80			
Identification rinçage		E1 R				
Identification Filtre blanc		E1 902691 (
Identification Blanc de canne Masse corrigée blanc de filtre	mg	E1 BC (B 0,015				
Masse corrigée blanc de canne	mg	0,015				
Masse de HF blanc	mg	0,030		1		
Blanc HF particulaire	mg/Nm ³ sec	0,018				
Masse corrigée filtre Masse corrigée rinçage de canne	mg	0,015				
Masse configee finçage de canne Masse de HF captée		0,015				
HF particulaire	mg/Nm3 sec	0,018		± 0,0159 mg HF / Nm³ sec		
		UF a satisada ba				
		HF particulaire	et gazeu	×		
	Concentration retenue	0,04		± 0,0286 mg HF / Nm ³ sec		
Concentration	n prélèvement à O₂ref	0,073		± 0,0572 mg HF / Nm ³ see		
	Blanc de prélèvement	0,018		mg HF/Nm3 sec		
Concentration blan	c de prélèvement à O ₂ ref	0,035		mg HF/Nm ³ sec		
	Rapport Blanc /VLE	3%		Conform e		
	Les incertitudes sont don	nées pour un int	ervalle de	confiance de 95% (k=2)		
	Test étanch			1		
			- 46			
	Débit de prélèvement Debit de prelevemen		15			
	Débit de fuite déb		0,1			
	Débit de fuite fin		0,2			
	Validation test de f	N. I. S.	0			
/PMC/A R/11 rev37	Validation test de	e ruite fin	0	J		
THE STATE OF THE S						

SITE: SAVE Cornillé
INSTALLATION: Ligne d'incinération

ESSAI N° : E1
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)			LQ/VLE (%)	Conformité (< 20 % VLE)
HF	1	mg/Nm3 sec	0,225	1,627	0,184	18,4	Conforme

SITE :	SAVE Cornillé					
NSTALLATION :	Ligne d'incinération	n				
ESSAI N° :		E2 F				
Date e	t horaires de mesurage :	19-sept-23	de	12:43	à	13:46
FILTRATION	t notation do incourage :	10 dopt 20		12.10	-	10.10
	Diamètre de buse (mm) :	6.03	mm			
	empérature de la canne :	111.0	(°C)			
	A	0.0000000	Marco.			
	Température du filtre :	110,0	(°C)			
	Intérieur conduit	V				
	Extérieur conduit	X				
SOCINETISME						
	Isocinétisme	100%				
			1000			
Volume de fumées prélevé	Nm ³ sec	HF gaze 0,146	ux			
20	Nin sec					
Identification du Blanc Concentration du blanc de barboteurs	mg F ⁻ /l	E1 BF (BI	anc)			
Volume du blanc de barboteurs	ml	0				
Masse dans le blanc de barboteurs	mg F* mg/Nm³ sec	0,000				
Blanc HF gazeux	mg/Nm° sec	0,000				
Identification du Barboteur 1 Identification du Barboteur 2		E2 F				
Concentration de la solution du barboteur 1	mg F ⁻ /I	0,000				
Volume ajusté de la solution du barboteur 1 Concentration de la solution du barboteur 2	ml mg F /l	0,000				
Volume ajusté de la solution du barboteur 2	ml	0				
Rendement barbotage		ND				
Masse de HF gazeux captée	mg	0,000				
HF gazeux	mg/Nm3 sec	31811 Octob (± 0,000 mg HF / Nm³ sec	С	
Volume total prélevé	Nm ³ sec	HF particu 1,546	laire			
Identification filtre	1411 500	E2 9050				
Identification rinçage		E2 R0 E1 902691 (
Identification Filtre blanc Identification Blanc de canne		E1 BC (B)				
Masse corrigée blanc de filtre	mg	0,015				
Masse corrigée blanc de canne Masse de HF blanc	mg mg	0,015 0,030		•		
Blanc HF particulaire	77.7	0,019				
Masse corrinée filtre	mg	0,015				
Masse corrigée filtre Masse corrigée rinçage de canne		0,015				
Masse de HF captée HF particulaire	mg/Nm3 sec	0,030 0,019		± 0,0167 mg HF / Nm³ sec	man and	
		37.4.53.53				
		HF particulaire	et gazeu	x		
	Concentration retenue	0,02		± 0,0176 mg HF / Nm ³ sec	c	
Concentration	n prélèvement à O₂ref	0,037		± 0,0352 mg HF / Nm ³ sec		
	Blanc de prélèsement	0,019		mg HF/Nm ³ sec		
Concentration blan	Blanc de prélèvement c de prélèvement à O ₂ ref	0,019		mg HF/Nm ³ sec		
oo, to man on our	Rapport Blanc /VLE	4%).	Conforme		
	CHECK TO CONTRACT SCORE SCORE					
	Les incertitudes sont don	nnées pour un int	ervalle de	conflance de 95% (k=2)		
	Test étanch	éité				
	Débit de prélèvement		15			
	Debit de preievemei		15			
	Débit de fuite déb Débit de fuite fir		0,1	-		
	Validation test de		0,2			
	Validation test de	THE PROPERTY OF THE PARTY OF TH	0			
E/PMC/A IR/11 rev37						

INSTALLATION:	Ligne d'incinération
ESSAI N°:	E2
Data	40/00/22

SAVE Cornillé

20	Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)			LQ/VLE (%)	Conformité (< 20 % VLE)
H	F	1	mg/Nm3 sec	0,146	1,546	0,037	3,7	Conforme

Ligne d'incinération ESSAI N°: Date et horaires de mesurage: 19-sept-23 de 13:55 à 14:5i FILTRATION Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du filtre: 110,0 (°C) Intérieur conduit Extérieur conduit X	SITE :	SAVE Cornillé					
ESAI N: Date et horaires de mesurage: 19-sept-23 de 13:55 a 14:55 FILTRATION Diamètre de buse (mm): 6,03 mm Température de litre: 110,0 (°C) Température de litre: 110,0 (°C) Température de litre: 110,0 (°C) Intérieur conduit Extérieur conduit Extérieu	INSTALLATION :	Liane d'incinération	. n				
Date et horaires de mesurage: 19-sept-23 de 13:55 à 14:5 FILTRATION Diamètre de buse (mm): 6,03 mm Température de la canne: 111.0 (°C) Température de litre: 110,0 (°C) Intérieur conduit X SOCINETISME Isocinétisme Intérieur conduit X Wolume de sumées préleve Isocinétisme		Ligite a incineration					
FILTRATION Diamètre de buse (mm): 6,03 mm Température de la canne: 111,0 (°C) Température du stire: 110,0 (°C) Intérieur conduit Extérieur conduit Extérieur conduit X August de sumées prélève Isocinétisme Isocinétis			77.70 (0)				
Diamètre de buse (mm): 6.03 mm Température de la cane : 111.0 (°C) Température de la cane : 111.0 (°C) Intérieur conduit	Date e	horaires de mesurage :	19-sept-23	de	13:55	à	14:58
Température de la canne : 111,0 (°C) Température du Sitre : 110,0 (°C) Intérieur conduit Extérieur conduit Extérieur conduit X SOCINETISME Isocinétisme 99% Mentification du Blanc Concentration du blanc Concentration du blanc de barbdeurs Volume du blanc de barbdeurs Figure du blanc de barbdeurs Winne du blanc de barbdeur 1 Barbdeur 2 O 000 Generatration de la scultion du barbdeur 1 Winne du barbdeur 2 O 0 0 Concentration de la scultion du barbdeur 1 Masse de la scultion du barbdeur 2 Winne quist de la scultion du barbdeur 2 Winne quist de la scultion du barbdeur 2 Winne du barbdeur 1 Winne du barbdeur 1 Winne du barbdeur 2 Winne du barbdeur 1 Winne du barbdeur 2	FILTRATION						
Température du titre: 110,0 (°C) Intérieur conduit Extérieur conduit Extérieur conduit Extérieur conduit Extérieur conduit Extérieur conduit Extérieur conduit Volume de lumées prélove Nem³ sec 0,216 Identification du Blanc Concentration du blanc de barbdeurs Masse dans le barbdeur 1 Masse dans le barbdeur 2 Masse dans le barbdeur 3 Masse dans le barbdeur 2 Masse dans le barbdeur 3 Masse dans le barbdeur 2 Masse dans le barbdeur 3 Masse dans le barbdeur 3 Masse dans le barbdeur 3 Masse dans le barbdeur 4 Masse		Diamètre de buse (mm) :	6,03	mm			
Interieur conduit Extérieur conduit SOCINETISME Socinétisme S9%	Te	mpérature de la canne :	111,0	(°C)			
Interieur conduit Extérieur conduit SOCINETISME Socinétisme S9%		Température du filtre :	110.0	(°C)			
Extérieur conduit X				1.97			
SOCINETISME Isocinétisme S9%							
Isocinétisme S99%		Extendu Conduit	_ ^				
Volume de fumées prélevé Nim³ sec 0,216 Let BF (Blanc) Concentration du blanc de barboteurs Masse dans le blanc de barboteurs Masse dans le blanc de barboteurs Masse dans le blanc de barboteurs Masse de l'écapeux Volume du blanc de barboteurs Masse de l'écapeux Masse de l'écapeux Volume tout blanc de barboteurs Masse de l'écapeux Masse de l'écapeux Volume tout barboteur 2 Volume tout barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume tout barboteur 2 Volume tout barboteur 2 Volume ajusté de la solution du barboteur 2 Volume ajusté de la solution du barboteur 2 Volume tout barboteur 2 Volume tout barboteur 2 Masse de HF gazeux captée HF particulaire Volume tout prélevée Identification filtre blanc Identification filtre	SOCINETISME						
Volume de fumées préleve Nm³ sec 0,216		Isocinétisme	99%				
Volume de lumées prélève Nm³ sec 0,216							
Volume de lumées prélève Nm³ sec 0,216							
Identification du Blanc Concentration du blanc de barboteurs Volume du blanc de barboteurs Masse dans le blanc de barboteur 1 Identification du Barboteur 2 Identification de la solution du barboteur 2 Identification filtre la solution de la		0,000	100 / 100 mm / 100 mm				
Concentration du blanc de barboteurs mg F // 0 Volume du blanc de barboteurs mg F // 0,000 Blanc HF gazeux mg/Nm² sec 0,000 Identification du Barboteur 1 Identification du Barboteur 2 Im I 192 Concentration de la solution du barboteur 2 Im I 192 Concentration de la solution du barboteur 2 Im I 192 Concentration de la solution du barboteur 2 Im I 0,000 Im I 192 Im I 192 Im I 192 Im I 192 Im I 0,000 Im I 192 Im I 193	Volume de fumées prélevé	Nm ³ sec	0,216				
Concentration du blanc de barboteurs mg F // 0 Volume du blanc de barboteurs mg F // 0,000 Blanc HF gazeux mg/Nm² sec 0,000 Identification du Barboteur 1 Identification du Barboteur 2 Im I 192 Concentration de la solution du barboteur 2 Im I 192 Concentration de la solution du barboteur 2 Im I 192 Concentration de la solution du barboteur 2 Im I 0,000 Im I 192 Im I 192 Im I 192 Im I 192 Im I 0,000 Im I 192 Im I 193	Identification du Blanc		E1 BF (BI	anc)			
Masse dans le blanc de barboteurs Blanc HF gazeux mg/Nm³ sec 0,000			0	700-5 TO			
Blanc HF gazeux mg/Nm³ sec 0,000		mg F					
Concentration du Barboteur 2 0 0 192 1	Blanc HF gazeux		0,000				
Concentration du Barboteur 2 0 0 192 1	Identification du Darbatour 1		F2F				
Volume ajusté de la solution du barboteur 2 mg Fr/1 0,0000	Identification du Barboteur 2		0				
Concentration de la solution du barboteur 2 mg F/l 0,000							
Rendement barbotage Masse de HF gazeux captée HF gazeux Mg/Nm3 sec 0,047 ### particulaire Volume total prélevé Identification fittre Volume total prélevé Identification fittre Identification Fittre blanc Identification Fittre blanc Identification Fittre blanc Identification Blanc de canne Masse corrigée blanc de canne Masse corrigée blanc de fittre Mg 0,015 Masse de HF blanc Blanc HF particulaire Masse corrigée fittre Mg 0,030 Blanc HF particulaire Mg 0,030 Masse de HF captée HF particulaire Mg Non mesuré Masse de HF captée HF particulaire Mg/Nm3 sec Concentration retenue Concentration prélèvement à O ₂ ref Rapport Blanc /VLE Débit de prélèvement tin (l/min) 3,8 Debit de prélèvement tin (l/min) 0,011 Débit de prélèvement tin (l/min) 0,011 Débit de prélèvement tin (l/min) 0,011 Débit de futte début (l/min) 0,011 Débit de futte de futte debut (l/min	Concentration de la solution du barboteur 2	mg F-/I	0,000				
Masse de HF gazeux mg/Nm3 sec HF gazeux mg/Nm3 sec Volume total prélevé Identification litre Identification litr		ml					
HF gazeux mg/Nm3 sec	A LOCAL CONTROL OF THE CONTROL OF TH						
Volume total préleve Identification filtre Identification filtre Identification filtre Identification Filtre blanc Identification Filtre blanc Identification Filtre blanc Identification Filtre blanc Identification Blanc de canne Masse corrigée blanc de filtre Masse corrigée blanc de canne Masse corrigée blanc de canne Masse corrigée blanc de canne Masse corrigée filtre Mg 0,015 Masse corrigée filtre Mg 0,030 Masse corrigée filtre Mg Non mesuré Mnon mesuré Mnon mesuré Mnon mesuré Mnon mesuré Non mesuré N		The state of the s			+ 0.051 mg HF / Nm³ sec		
Volume total préleve Identification filtre E3 905241 E3 905241 E3 RC E3 905241 E3 RC E1 902691 (Blanc) E1 BC (Blan			HF particulaire		2 0,001 1119 111 7 1111 000		
Identification rinçage Identification Filtre blanc Identification Filtre blanc Identification Blanc de canne Masse corrigée blanc de filtre Masse corrigée blanc de canne Masse corrigée blanc de canne Masse corrigée filtre Masse corrigée minage de canne Masse de HF captée HF particulaire MS/Nm3 sec Non mesuré Concentration prélèvement à O₂ref 0,088 ± 0,0513 mg HF / Nm³ sec Documentation prélèvement à O₂ref Non mesuré Concentration blanc de prélèvement à O₂ref Non mesuré Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement ta (l/min) Débit de prélèvement ta (l/min) Débit de fuite début (l/min) Débit de fuite fin (l/min) Validation test de fuite début O	Volume total prélevé	Nm ³ sec	1,594				
Identification Filtre blanc E1 902691 (Blanc) E1 BC (Blanc)							
Identification Blanc de canne Masse corrigée blanc de filtre mg 0,015 mg 0,015 mg 0,030 mg 0,030 mg 0,030 mg 0,015 mg 0,030 mg 0,015 mg 0,030 mg 0,015 mg							
Masse corrigée blanc de canne Masse de HF blanc Blanc HF particulaire Masse corrigée filtre Masse corrigée filtre Masse corrigée filtre Masse corrigée mitre Masse corrigée mitre Masse de HF captée HF particulaire MF particula	Identification Blanc de canne		E1 BC (Blanc)				
Masse de HF blanc Blanc HF particulaire Masse corrigée filtre Masse corrigée filtre Masse corrigée filtre Masse de HF captée Masse de HF captée Masse de HF captée Mg Non mesuré HF particulaire MF particulaire MF particulaire Concentration retenue Concentration prélèvement à O2ref Blanc de prélèvement Concentration blanc de prélèvement à O2ref Rapport Blanc /VLE MF Particulaire et gazeux Concentration blanc de prélèvement Concentration blanc de prélèvement à O2ref Rapport Blanc /VLE MF Particulaire et gazeux Concentration prélèvement à O2ref 0,088 ± 0,0513 mg HF / Nm³ sec ± 0,0513 mg HF / Nm³ sec ± 0,002 mg HF/Nm³ sec Concentration blanc de prélèvement à O2ref 0,000 mg HF/Nm³ sec Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prélèvement mn (u/min) 0,01 Débit de fuite début Validation test de fuite début O		The state of the s	212020				
Masse corrigée filtre mg 0,015 Masse de HF captée mg Non mesuré HF particulaire mg/Nm3 sec Non mesuré HF particulaire mg/Nm3 sec Non mesuré Concentration retenue 0,05 ± 0,0513 mg HF / Nm³ sec ± 0,1026 mg HF / Nm³ sec Concentration prélèvement à O₂ref 0,088 ± 0,1026 mg HF / Nm³ sec Blanc de prélèvement 0,000 mg HF/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg HF/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prelèvement in (l/min) 3,8 Débit de fuite début (l/min) 0,01 Oèbit de fuite début (l/min) 0,01 Validation test de fuite début O							
Masse corrigee rinçage de canne Masse de HF captée HF particulaire MF particulaire U0,05 ± 0,0513 mg HF / Nm³ sec 10,026 mg HF / Nm³ sec MG MF / Nm³ sec MG M	Blanc HF particulaire	mg/Nm ³ sec	0,019				
Masse corrigee rinçage de canne Masse de HF captée HF particulaire MF particulaire U0,05 ± 0,0513 mg HF / Nm³ sec 10,026 mg HF / Nm³ sec MG MF / Nm³ sec MG M	Masse corrigée filtre	ma	Non mes	uré			
HF particulaire mg/Nm3 sec HF particulaire et gazeux Concentration retenue 0,05 ±0,0513 mg HF / Nm³ sec ±0,1026 mg HF / Nm³ sec Blanc de prélèvement 0,000 mg HF/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg HF/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prélèvement mn (μ/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite fâtulte début O	Masse corrigée rinçage de canne	mg	0,015	7000			
Concentration retenue Concentration prélèvement à O ₂ ref Blanc de prélèvement Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Oo1 Oo1 Oo1 Validation test de fuite début Oo2 Les incertitudes sont données pour un intervalle de confiance de 95% (k=2)							
Concentration retenue 0,05 ± 0,0513 mg HF / Nm³ sec Concentration prélèvement à O₂ref 0,088 ± 0,1026 mg HF / Nm³ sec Blanc de prélèvement 0,000 mg HF/Nm³ sec Concentration blanc de prélèvement à O₂ref 0,000 mg HF/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prélèvement début (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation test de fuite début O		mg/mile see		A11-000			
Concentration prélèvement à O ₂ ref Blanc de prélèvement O,000 mg HF/Nm³ sec mg HF/Nm³ sec Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE O% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de prélèvement an (μ/min) Débit de fuite début (l/min) O,01 Débit de fuite début Validation test de fuite début O			HF particulaire	et gazeux			
Concentration prélèvement à O ₂ ref 0,088 ± 0,1026 mg HF / Nm³ sec Blanc de prélèvement 0,000 mg HF/Nm³ sec Concentration blanc de prélèvement à O ₂ ref 0,000 mg HF/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prélèvement mn (l/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O		Concentration retenue	0.05		+ 0.0542 m = UE / Nm2 ===		
Blanc de prélèvement 0,000 mg HF/Nm³ sec Concentration blanc de prélèvement à O₂/ef 0,000 mg HF/Nm³ sec Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prélèvement ni (l/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite début (l/min) 0,01 Validation test de fuite début O							
Concentration blanc de prélèvement à O ₂ ref Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) Débit de prélèvement in (l/min) Débit de fuite début (l/min) Débit de fuite début (l/min) Ool1 Validation test de fuite début O					2 5		
Rapport Blanc /VLE 0% Conforme Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prelèvement în (l/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O							
Les incertitudes sont données pour un intervalle de confiance de 95% (k=2) Test étanchéité Débit de prélèvement début (l/min) 3,8 Débit de prelèvement în (l/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O	Concentration bland	de prélèvement à O ₂ ref	0,000	1	The state of the s		
Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prelèvement în (l/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O		Rapport Blanc /VLE	0%		Conforme		
Test étanchéité Débit de prélèvement début (l/min) 3,8 Debit de prelèvement lin (l/min) 3,8 Débit de fuite début (l/min) 0,01 Débit de fuite fin (l/min) 0,01 Validation test de fuite début O		Les incertitudes sont do	onnées pour un int	ervalle de d	onflance de 95% (k=2)		
Débit de prélèvement début (I/min) Débit de prelèvement în (I/min) Débit de fuite début (I/min) Débit de fuite fin (I/min) O,01 Validation test de fuite début O							
Debit de preievement în (I/min) 3,8 Débit de fuite début (I/min) 0,01 Débit de fuite fin (I/min) 0,01 Validation test de fuite début O					1		
Débit de fuite début (//min) 0,01 Débit de fuite fin (//min) 0,01 Validation test de fuite début 0							
Débit de fuite fin (I/min) 0,01 Validation test de fuite début O							
Validation test de fuite début O							
Validation test de fuite fin O		a secondary designation	5.00 * 100 to 1	The second second			
		validation test de	CONTRACTOR				

SITE : SAVE Cornillé INSTALLATION : Ligne d'incinération

ESSAI N° : E3
Date 19/09/23

Composé	VLE			Volume prélevé fraction part (Nm3 sec)		LQ/VLE (%)	Conformité (< 20 % VLE)
HF	1	mg/Nm3 sec	0,216	1,594	0,176	17,6	Conforme

irh ingénieur conseil membre d'Antea Group	TEN	EUR EN I	META	ΝUX	LOURDS	PARTIC	ULAIRES		
SITE:	SAVE Corni	llé							
INSTALLATI		Ligne d'ir	nciné	ratio	on				
N° ESSAI :	E4								
Date et horaires	de prélèvement	19-sept-23		de	16:22	à	17	:25	
FILTRATION	I								
Diamètre	de buse (mm) :	6,03	mm						
Températu	ire de la canne :	180,0	(°C)						
Temp	érature du filtre :	181,0	(°C)			Te	est d'étanché	ité	
	Intérieur conduit	0				Débit de	prélèvement	début (I/min)	20
Е	xtérieur conduit	X				Débit	de prélèvem	ent fin (I/min)	20
						[Débit de fuite	début (l/min)	0,1
ISOCINETIS	ME						Débit de fi	uite fin (I/min)	0,2
						Val	lidation test o	de fuite début	0
	Isocinétisme	96%					0		
2	Masse de métal	Masse de métal	Mass mé		Masse de métal	Volume de	Teneur er	n métaux (mg	n/Nm³ sec)
Elément	Filtre Blanc Prélèvement (µg)	Rinçage Blanc Prélèvement (µg)	Filt Mes (µg	ure	Solution Rinçage (µg)	gaz prélevé (Nm³ sec)	Prélèvement		Blanc de prélèvement
Echantillon N°	4 902387 (Bland	E4 BC	E4 70	7227	E4RC				
Hg	0	0	0,00	00	0,00000]	0,00000	± 0,00002	0,00000
Sb	0	0	0		0,0000	1	0,00000	± 0,00007	0,000000
As	0	0	0		0,0000]	0,00000	± 0,00007	0,000000
Cd	0	0	0		0,0000]	0,00000	± 0,00003	0,000000
Cr	1,48	0	1,67		0,0000	1,515	0,00110	± 0,00009	0,000977
Со	0	0	0		0,0000	'''	0,00000	± 0,00003	0,000000
Cu	0	0			5,3000		0,00350	± 0,00045	0,000000
Mn	0,5	0	0,96		0,3200]	0,00085	± 0,00017	0,000330
N II	1,62	0	1,9		0,6000] [0,00165	± 0,00050	0,001070
Ni			0,125		0,5800	ı 1	0,00047	± 0,00011	0,000083
Pb	0,125	0	0,1	25	0,5600]	0,000	_ 0,000	-,
	0,125 0	0	0,1		0,0000		0,00000	± 0,00003	0,000000

irh ingénieur conseil membre d'Antea Group		TENEUR E	N META	AUX I	LOURDS	GAZEUX			
SITE : INSTALLATIO	SAVE Cornille ON : Ligne d'ir		า						
N° ESSAI :	E4								
Date et horaires	de prélèvement :	19-sept-23	de	1	16.22	à	17	.25	
FILTRATION			ī	Débit d	e prélèveme	ent Mtx début/	fin (l/min)	2,9	2,9
	tre de buse (mm) :	6,03	mm			COLUMN TWO CONTROLS AND	ZZBERTEN BERTER	but (I/min)	0,01
Diame	tie de buse (illiii) .	0,03						e fin (I/min)	0,01
Tempéra	ature de la canne :	180,0	(°C)					fuite début	0
Tem	pérature du filtre :	181,0	(°C)			Valid	ation test	de fuite fin	0
			100 100	Débit o	de prélèveme	ent Hg début/fi	in (l/min)	3,2	3,2
				1000-18VOOV-	***************************************	Débit	de fuite dé	but (I/min)	0,01
								e fin (I/min)	0,01
			-						0,01
			-	Validation test de fuite début					5207
						Valid	ation test	de fuite fin	0
	Masse de métal	Masse de métal	Volume	de		Teneur en me	étaux (mg	g/Nm³ sec)	
Elément	Blanc Prélèvement (µg)	Prélèvement (µg)	gaz prélevé (Nm³ sec)		Prélèvement		Blanc de prélèvement		Rendemen de barbotage
Echantillon N°		H4 Hg (B1+B2	2)						
Echantillon N°	E4 BHg (Blanc)	H4 Hg (B3)							
Hg	0	0,54707	0,179	9	0,00305	± 0,00068	0,0	0000	100%
Echantillon N°		E4 M (B1+B2	2)			Proposition of the Control of the Co			
Echantillon N°	E4 BM (Blanc)	E4 M (B3)	j						
Sb	0	0,10029			0,00061	± 0,00002	0,0	0000	74%
As	0	0	1	Ì	0,00000	± 0,00008	0,0	0000	ND
Cd	0	0,0108	1	İ	0,00007	± 0,00007	0,0	0000	0%
Cr	0	0,39814	1	- 1	0,00240	± 0,00021	7/1	0000	97%
Со	0	0	gapanata kana		0,00000	±0,00008		0000	ND
Cu	0	0,0805	0,166	6	0,00049	± 0,00042	0,0	0000	99%
Mn	0	0,30554		[0,00184	± 0,00018	0,0	0000	96%
Ni	0,257	1,35864		[0,00820	± 0,00108	0,0	016	89%
Pb	0	0,0535		[0,00032	± 0,00038	0,0	0000	100%
П	0	0		Ī	0,00000	± 0,00020	0,0	0000	ND
V	0	0		1	0,00000	± 0,00008	0,0	0000	ND

TENEUR EN METAUX LOURDS PARTICULAIRES ET GAZEUX

SITE: SAVE Cornillé
INSTALLATION: Ligne d'incinération

N° ESSAI : E4 E4

Date et horaires de prélèvement : 19/09/23 de 16:22 à 17:25

	Teneur en métaux (mg/Nm³ sec)						
Elément	Prélèv	ement/	Prélèvement à O2 ref		Blanc de prélèvement	Blanc de prélèvement à O2 ref	Blanc /VLE
Hg	0,0030	± 0,00068	0,0058	± 0,00136	0,00000	0,000	0%
Sb	0,00061	± 0,00007	0,001	± 0,00008	0,00000	0,0000	
As	0,00000	± 0,00011	0,000	± 0,00011	0,00000	0,0000	
Cd	0,00007	± 0,00008	0,000	± 0,00008	0,00000	0,0000	
Cr	0,00351	± 0,00023	0,007	± 0,00026	0,00098	0,0018	
Co	0,00000	± 0,00008	0,000	± 0,00008	0,00000	0,0000	
Cu	0,00399	± 0,00061	0,008	± 0,00063	0,00000	0,0000	
Mn	0,00269	± 0,00025	0,005	± 0,00027	0,00033	0,0006	
Ni	0,00985	± 0,00119	0,019	± 0,00124	0,00262	0,0049	
Pb	0,00079	± 0,00040	0,001	± 0,00040	0,00008	0,0002	9
П	0,00000	± 0,00020	0,000	± 0,00020	0,00000	0,0000	
V	0,00000	± 0,00008	0,000	± 0,00008	0,00000	0,0000	
Cd+Tl	0,00	0007	0,	000	0,00000	0,0000	0%
Sb+As+Pb+Cr+Co+ Cu+Mn+Ni+V	0,01653		0,0	3119	0,003	0,006	1%
N/A: Non Applicable							
E/PMC/AIR/11 rev37							

VALIDATION DE LA LQ PAR RAPPORT A LA VLE

SITE: SAVE Cornillé
INSTALLATION: Ligne d'incinération

ESSAI N° : E4
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)	Volume prélevé fraction part (Nm3 sec)	LQ dans les conditions de la VLE	LQ/VLE (%)	Conformité (< 20 % VLE)
Hg	0,05	mg/Nm3 sec	0,179	1,515	0,0019	3,74	Conforme
Cd+Tl	0,05	mg/Nm3 sec			0,0028	5,6	Conforme
Sb+As+Pb+Cr+Co+Cu+Mn+ Ni+V	0,5	mg/Nm3 sec	0,166	1,515	0,0185	3,7	Conforme

constitution of								
SITE :	SAVE C							
INSTALLATION:	Ligne d	'incinératio	n					
N° ESSAI :	Diox1			SYSTÈME	DE PRELEV	EMENT:	EURODIOX	
Date et horaires de pré	élèvement :	19/09/2023	de	10:10	à	16:1	5	
FILTRATION								
		buse (mm):	5,98	mm	Te	st étanch	néité	
Te	CASE TOTAL S	de la canne :	12,0	(°C)	5000	110		
		ture du filtre :	15,0	(°C)			nt début (I/min)	25
	Tempér	ature résine :	12,0	(°C)	15		ment fin (I/min)	25
ISOCINETISME					De		te début (I/min)	0,5
			1050/				fuite fin (I/min)	0,6
		Isocinétisme	105%		1855200		t de fuite début	0
					V	alidation	test de fuite fin	0
	Blanc P	rélèvement			O SERVICIONAL ARTS		Teneur en PC	DD/F
	PERSONAL PROPERTY AND ADDRESS.	ng)	Prélève	ment (ng)	Volume de		(ng i-TEQ/Nm ³	sec)
Elément	(ng)	(ng i-TEQ)	(ng)	(ng i-TEQ)	gaz prélevé (Nm³ sec)	Blanc	de	èvement
(40) (40)	1.50	242 Control (1997)	A RESTA	, St. 1700		prélèven	nent	CVCITICITE
Echantillon N° 2,3,7,8-TCDD	0,0000	0,000	0,0313	0,03130		0,000	0 0	,0040
1,2,3,7,8-PeCDD	0,0000	0,0000	0,0088	0,03130		0,000		,0006
1,2,3,4,7,8-HxCDD	0,0000	0,0000	0,0030	0,00030		0,000		,0000
1,2,3,6,7,8-HxCDD	0,0000	0,0000	0,0030	0,00030		0,000		,0000
1,2,3,4,6,7,8-HpCDD	0,0034	0,0000	0,0270	0,00027		0,000		,0000
1,2,3,7,8,9-HxCDD	0,0000	0,0000	0,0030	0,00030		0,000		,0000
2,3,7,8-TCDF	0,0000	0,0000	0,46	0,04600		0,000		,0059
1,2,3,7,8-PeCDF	0,0000	0,0000	0,1400	0,00700		0,000		,0009
2,3,4,7,8-PeCDF	0,0000	0,0000	0,0663	0,03315	7,745	0,000		,0043
1,2,3,4,7,8-HxCDF	0,0000	0,0000	0,0173	0,00173		0,000	0 0	,0002
1,2,3,6,7,8-HxCDF	0,0000	0,0000	0,0163	0,00163		0,000	0 0	,0002
1,2,3,7,8,9-HxCDF	0,0000	0,0000	0,0000	0,00000		0,000	0 0	,0000
2,3,4,6,7,8-HxCDF	0,0000	0,0000	0,0079	0,00079		0,000	0 0	,0001
1,2,3,4,6,7,8-HpCDF	0,0033	0,0000	0,0252	0,00025		0,000		,0000
1,2,3,4,7,8,9-HpCDF	0,0000	0,0000	0,0024	0,00002		0,000	0 0	,0000
OCDD	0,0000	0,0000	0,0140	0,00001		0,000		,0000
OCDF	0,0000	0,0000	0,0000	0,00000		0,000		,0000
TOTAL PCDD/F	0,0067	0,0001	0,8255	0,1275		0,000		± 0,002438
		TOTAL PO	DD/F (ng	i-TEQ/Nm3			0,0304	± 0,005082
				Rappor	t Blanc /VLE			nforme
Tx Réapparition 13C12		` '	107			PCDI		29%
Tx Réapparition 13C12	7 - 20 0 11 12 12 12 12	- 5/25/25/25/25	110			PCD	F	71%
Tx Réapparition 13C12	-1234789-H	HptCDF(%)	107	I				

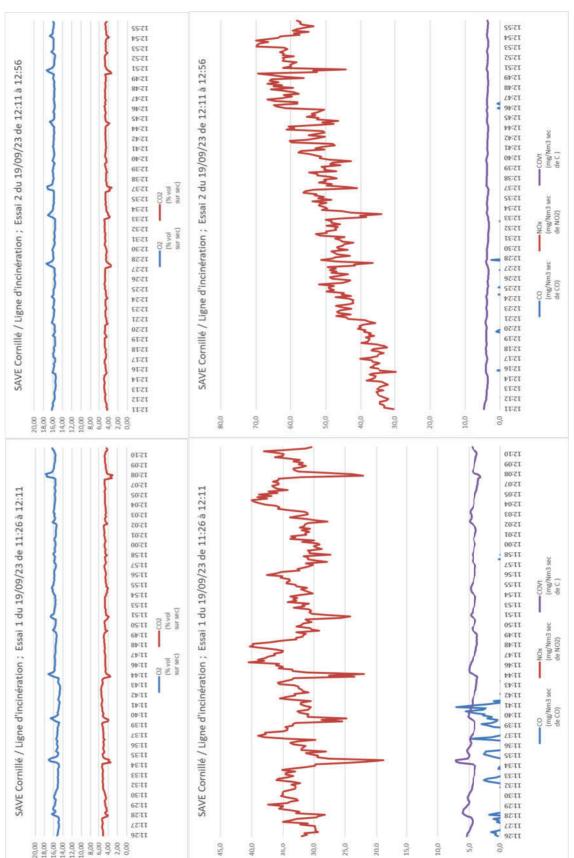
irh Ingenieus

VALIDATION DE LA LQ PAR RAPPORT A LA VLE

SITE: SAVE Cornillé
INSTALLATION: Ligne d'incinération
ESSAI N°: Diox

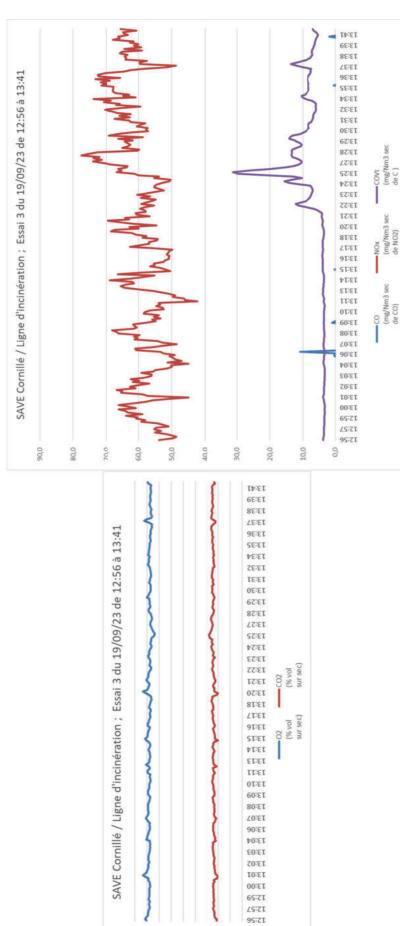
Date 19/09/23

Composé	VLE	Unités	Volume prélevé fraction gaz (Nm3 sec)			LQ/VLE (%)	Conformité (< 20 % VLE)
PCDD/F	0,1	ng/Nm3 sec	33 94	7,745	0,0028	2,8	Conforme


Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

			Dérive	3,4%	0,4%	2,0%	2,7%		3,1%
		2ref	Incertitude (k=2)		4,9	41	110	70	0.9
	:41	Concentration à O2ref	+1		+1	~	+1	+1	+1
	de 12:56 à 13	Conce	Valeur moyenne		9,1	0	110	73	11.7
	Essai 3 du 19/09/23 de 12:56 à 13:41	2 réel	Incertitude (k=2)	0,84	0,97	11	30	18	3.7
	Essai	Concentration à 02 réel	+1	+1	+1	~	+1	+1	+
		Conce	Valeur moy enne	15,64	4,82	0	09	39	6.2
		2ref	Incertitude (k=2)		5,4	44	120	75	8.5
	:26	Concentration à O2ref	+1		+1	~	+1	+1	+
	de 12:11 à 12	Conce	Valeur moyenne		0'6	0	100	62	6.9
	Essai 2 du 19/09/23 de 12:11 à 12:56	réel	Incertitude (k=2)	0,85	96'0	10	30	18	3.1
	Essai	Concentration à O2 réel	+1	+1	+1	~	+1	+1	+
		Concen	Valeur moyenne	15,86	4,57	0	49	32	3.5
)2ref	Incertitude (k=2)		4,7	41	100	64	2.8
	12:11	Concentration à O2ref	+1		+1	~	+1	+1	+
	3 de 11:26 à	Conc	Valeur moyenne		8,8	0	61	40	8.1
	Essai 1 du 19/09/23 de 11:26 à 12:11	2 réel	Incertitude (k=2)	0,84	0,97	11,0	28	18	3.2
	Essa	Concentration à O2 réel	+1	+1	+1	٧	+1	+1	+
		Conce	Valeur moyenne	15,56	4,74	0	33	21	4.4
SAVE Cornillé / Ligne d'incinération			Unité	(% vol sur sec)	(% vol sur sec)	(mg/Nm3 sec de CO)	(mg/Nm3 sec de NO2)	(mg/Nm3 sec de NO)	(mg/Nm3 sec de C.)
SAVE Cornillé / I			Paramètre	02	CO2	00	NOx	ON	COV

Site				SAVE Cornillé	nillé		
Installation				Ligne d'incinération	nération		
Date				19/09/23	23		
Paramètres	VLE	Unités	Gamme (ppm)	LQ paramètre (mg/Nm3 sec)		LQ/VLE (%)	Q dans les conditions de la VLE (mg/Nm3 LQ/VLE (%) Conformité (<20% VLE) sec)
00	20	mg/Nm3 sec	200	0,89	1,7	3,3	CONFORME
NOx	400	mg/Nm3 sec	250	1,19	2,2	9'0	CONFORME
COVt	20	20 mgC/Nm3 sec	100	0,14	6,0	1,3	CONFORME



Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

16,00 12,00 12,00 8,00 6,00 4,00 2,00 0,00

Annexe II : Données d'autosurveillance

Point de contrôle	Déno	omination	Ligne 1
Conformité de la plateforme de travail aux normes de références		-	Oui
	Résultats ob	27143	
Débit (moyenne)	Valeurs règlem	/	
	Résultats d'autosi	Pas de mesure	
	Résultats	30,9	
Vitesse	Valeurs règlementa	12	
	Résultats d'au	Pas de mesure	
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	0
СО	Valeurs règlementaires (DREAL)	Concentration (mg/Nm³ sec 11% O ₂)	50
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	5,9
	Résultats obtenus	Concentration (mg NO_2/Nm^3 sec 11% O_2)	90
NOx	Valeurs règlementaires	Concentration (mg NO ₂ /Nm³ sec 11% O ₂)	400
	Résultats d'autosurveillance	Concentration (mg NO_2/Nm^3 sec 11% O_2)	90
	Résultats obtenus	Concentration (mgC/Nm³ sec 11% O₂)	8,9
COV	Valeurs règlementaires	Concentration (mgC/Nm³ sec 11% O ₂)	10
	Résultats d'autosurveillance	Concentration (mgC/Nm³ sec 11% O ₂)	4,8

Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

Point de contrôle	Dénom	ination	Ligne 1
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	0,52
Poussières	Valeurs règlementaires	Concentration (mg/Nm³ sec 11% O ₂)	10
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	Pas de mesure
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	9,8
SO ₂	Valeurs règlementaires	Concentration (mg/Nm³ sec 11% O ₂)	50
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	19,6
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	2,6
HCI	Valeurs règlementaires	Concentration (mg/Nm 3 sec 11% O $_2$)	10
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	7,1
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	0,066
HF	Valeurs règlementaires	Concentration (mg/Nm³ sec 11% O ₂)	1
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	Pas de mesure

Contrôle inopiné des rejets atmosphériques 2023 SOCIÉTÉ ARMORICAINE DE VALORISATION ENERGETIQUE

Point de contrôle	Dénom	ination	Ligne 1
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	0,0058
Hg	Valeurs règlementaires	Concentration (mg/Nm³ sec 11% O ₂)	0,05
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	Pas de mesure
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	0
Cd + Tl	Valeurs règlementaires	Concentration (mg/Nm³ sec 11% O ₂)	0,05
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	Pas de mesure
	Résultats obtenus	Concentration (mg/Nm³ sec 11% O ₂)	0,031
Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V	Valeurs règlementaires	Concentration (mg/Nm³ sec 11% O ₂)	0,5
	Résultats d'autosurveillance	Concentration (mg/Nm³ sec 11% O ₂)	Pas de mesure
	Résultats obtenus	Concentration (ng/Nm3 sec 11% O2)	0,030
Dioxines et furannes	Valeurs règlementaires	Concentration (ng/Nm3 sec 11% O2)	0,1
	Résultats d'autosurveillance	Concentration (ng/Nm3 sec 11% O2)	Pas de mesure

Annexe III: Expression des résultats

 METHODES MANUELLES (paramètres concernés : poussières, HCl, SO2, HF, NH3, Metaux lourds, Mercure, PCDD/F)

En application de la norme NFX 43 551, les règles d'expression des résultats à partir des résultats d'analyses sont les suivantes :

- Résultat d'analyse < Limite de Détection (LQ/3), la valeur retenue est : 0
- Limite de Détection (LQ/3) < Résultat d'analyse < Limite de quantification : la valeur retenue est LQ/2
- Dans le cas où le Blanc de site est supérieur à la valeur mesurée, le résultat est égal au blanc de site.

Métaux lourds :

Chaque métal est analysé séparément et répertorié dans 4 groupes conformément aux arrêtés ministériels.

- Composés gazeux et particulaires

Pour les fluorures, métaux et mercure, la fraction gazeuse est mesurée séparément de la fraction particulaire. Seule la concentration globale (gazeuse + particulaire) est indiquée dans les tableaux de résultat, conformément aux normes en vigueur.

- Conformité du rendement d'absorption

Pour le calcul du rendement d'absorption demandant de sommer les concentrations, il faut considérer :

- Une concentration nulle pour le compartiment où la concentration est inférieure à LQ/3
- Une concentration égale à LQ/2 si la valeur mesurée est comprise entre LQ/3 et LQ.

Il est admis que dans le cas où la concentration mesurée est faible et que le premier critère de rendement ne peut être atteint, l'essai est validé si la concentration dans le dernier barboteur est inférieure à la LO.

Si la concentration globale mesurée est inférieure à 20% de la VLE, il est admis que le critère de rendement peut ne pas être atteint sans pour autant qu'il y ait un impact sur le résultat.

 METHODES AUTOMATIQUES (paramètres concernés : O2, CO2, Nox, CO, COV) : Correction systématique de la dérive dans le temps des analyseurs.

Les critères de rendement de barbotage sont maintenus dans le cas de mesures non réglementaires.

Annexe IV: Plan de mesurage

PLAN DE MESURAGE

Conformément à la NFX 43-551, le plan d'échantillonnage sera réalisé selon les méthodes décrites dans le tableau suivant :

Type de polluants	Plan d'échantillonnage
Polluants sous forme particulaire ou	
vésiculaire :	Norme NF EN 13284-1
Poussières, métaux, HF, PCDD/F	
Polluants sous forme gazeuse :	Norma NE EN 15250
CO, NOx, SO ₂ , HCl, NH ₃ , COV	Norme NF EN 15259

L'ensemble de ces éléments du plan de mesurage est repris par conduit dans le tableau cidessous :

Installation / Configuration	Ligne d'incinération
Homogénéité selonNFX 43-551 : Les effluents sont issus d'un seul émetteur et lorsqu'il n'y a pas d'entrée d'air	Mesure en 1 point pour polluants gazeux. Pour polluants particulaires : quadrillage de la section. 3

DUREE DE PRELEVEMENT EN FONCTION DU POLLUANT MESURE (Arrêté du 11 mars 2010 modifié)

Type de polluants	Durée de prélèvement
Polluant à fraction particulaire Polluant à fractions particulaire et gazeuse (sauf PCDD/F)	Minimum 1h (1/2 h par axe de mesure) et LQ < 20% de la VLE
Polluant à fraction gazeuse uniquement	Minimum ½ h et LQ <20% de la VLE

Annexe V : Critères de conformité des blancs de prélèvement

En application de la NFX 43 551, le blanc doit être<20% de la VLE pour :

Métaux lourds (NF EN 14385)

Ammoniac (NF EN ISO 21877)

Fluorure d'hydrogène (HF) NF CEN/TS 17340

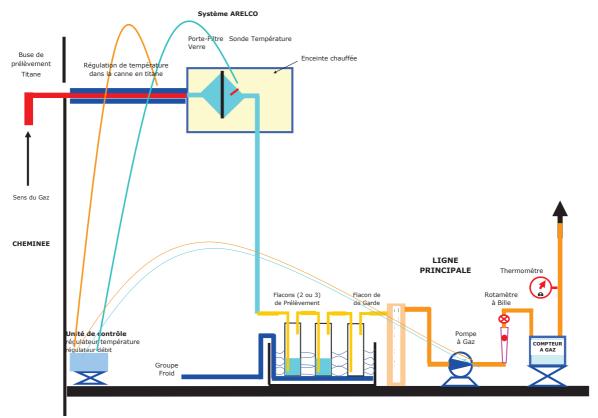
Dioxines et furannes (PCDD/F) NF EN 1948-1

Mercure (Hg) NF EN 13-211

Chlorure d'hydrogène (HCI) NF EN 1911

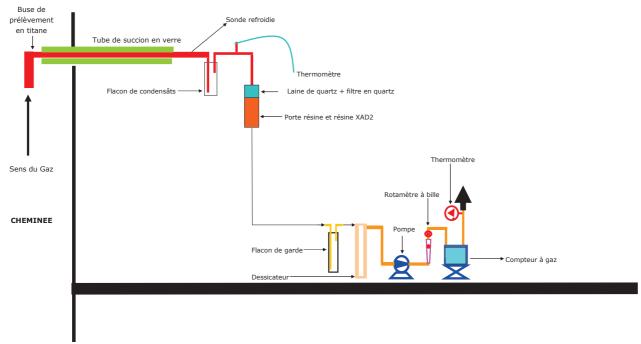
Poussières (NF EN 13284-1)

NFX 44052: §4: le blanc doit être < 5 mg/m³


Dioxyde de soufre (SO₂) NF EN 14791

Les critères de blancs de prélèvement sont maintenus dans le cas de mesures non réglementaires.

Annexe VI: Schémas des dispositifs de prélèvement


Prélèvements de polluants particulaires et gazeux (hors PCDD/PCDF)

Chaîne de prélèvement ARELCO® Isostack (filtration hors conduit)

Prélèvements de polluants particulaires et gazeux (PCDD/PCDF)

Prélèvement PCDD/F avec Kit Eurodiox

Annexe VII: Rapports d'analyses des laboratoires sous-traitants

EUROFINS ANALYSES DE L'AIR

Page 1/23

IRH INGENIEUR CONSEIL Madame Salomé ESNAULT agence ouest

8 rue olivier de serres 49070 BEAUCOUZE

RAPPORT D'ANALYSE

Dossier N°: 23R018844 Version du: 05/10/2023

N° de rapport d'analyse : AR-23-N8-020645-01 Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

Coordinateur de Projets Clients : Alexis Hinterreiter / AlexisHinterreiter@eurofins.com / +33 6 47 65 91 76

ACCREDITATION Nº 1-6925 Portée de pornible sur www.cofrac.fr

Page 2/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

Version du : 05/10/2023

N° de rapport d'analyse : AR-23-N8-020645-01

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23

Nom Commande : BREP230079
Référence Commande : BREP230079/SEN/19-09-23

N° Ech	Matrice		Référence échantillon
001	Air Emission	(AJE)	E1 902691 (Blanc)
002	Air Emission	(AIE)	E1 707180
003	Air Emission	(AJE)	E1 BC (Blanc)
004	Air Emission	(AIE)	E1 RC
005	Air Emission	(AIE)	E1 BCI (Blanc)
006	Air Emission	(AIE)	E1 CI (B1)
007	Air Emission	(AJE)	E1 CI (B2)
008	Air Emission	(AJE)	E1 BS (Blanc)
009	Air Emission	(AJE)	E1 S (B1)
010	Air Emission	(AJE)	E1 S (B2
011	Air Emission	(AJE)	E1 BF (Blanc)
012	Air Emission	(AJE)	E1 F (B1)
013	Air Emission	(AIE)	E1 F (B2)
014	Air Emission	(AJE)	E1 B NH (Blanc)
015	Air Emission	(AIE)	E1 NH (B1)
016	Air Emission	(AJE)	E1 NH (B2)
017	Air Emission	(AIE)	E0 C#134203+C#134176 (Blanc)
018	Air Emission	(AJE)	E0 C#134175+C#134200
019	Air Emission	(AJE)	E2 905043
020	Air Emission	(AJE)	E2 RC
021	Air Emission	(AJE)	E2 CI
022	Air Emission	(AJE)	E2 S
023	Air Emission	(AJE)	E2 F
024	Air Emission	(AJE)	E2 NH
025	Air Emission	(AJE)	E3 905241
026	Air Emission	(AJE)	E3 RC
027	Air Emission	(AJE)	E3 RCF (Blanc)
028	Air Emission	(AJE)	E3 CI
029	Air Emission	(AIE)	E3 S
030	Air Emission	(AJE)	E3 F
031	Air Emission	(AJE)	E3 NH
032	Air Emission	(AJE)	E4 902387 (Blanc)
033	Air Emission	(AJE)	E4 707227
034	Air Emission	(AIE)	E4 RC
035	Air Emission	(AJE)	E4 RCF (Blanc)

Page 3/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844 Version du : 05/10/2023

N° de rapport d'analyse : AR-23-N8-020645-01 Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079 Référence Commande : BREP230079/SEN/19-09-23

/elelell	Le Collillative . DINEF23	00/3/3EN/13-03-23	,	
036	Air Emission	(AIE)	E4 BM (Blanc)	
037	Air Emission	(AIC)	E4 M (B1+B2)	
038	Air Emission	(AJE)	E4 M (B3)	
039	Air Emission	(AJE)	E4 BHg (Blanc)	
040	Air Emission	(AJE)	E4 Hg (B1+B2)	
041	Air Emission	(AIE)	E4 Hg (B3)	
042	Air Emission	(AIE)	E4 BC (Blanc)	
043	Air Emission	(AIE)	E3 BFNH (Blanc)	

Page 4/23

006

EUROFINS ANALYSES DE L'AIR

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

 N° Echantillon
 001
 002
 003
 004
 005

 Référence client :
 E1 902691
 E1 707180
 E1 BC
 E1 BCI

 Référence client :
 E1 90 2691 (Blanc)
 E1 707180 (Blanc) (Blanc)
 E1 BC (Blanc) (Blanc)
 E1 BCI (B1)
 E1 BCI (B1)
 E1 CI (B1)

 Matrice :
 AIE
		- 5		100		32		1.3			2	
Date de prélèvement :			9/09/2023		9/09/2023		9/09/2023		9/09/2023	19/09/2023		9/09/202
Date de début d'analyse :		2	2/09/2023	2	2/09/2023	2	5/09/2023	2	5/09/2023	25/09/2023	2	5/09/202
	F	Pré	paration	P	hysico-(Chi	mique					
SG05 : Volume	mI			П		Т		Т		213	Т	110
XSJ7: Volume de rinçage	mI						48.3		59.8			
			Mesures	s g	raviméti	iqu	ies					
SL49 : Poussière sur filtre supérieur à l		T						г			т	
Masse de poussières non corrigée	mg	•	1,93	*	1.82							
Correction appliquée	mg		1,95	*	1.95							
Incertitude de la mesure ±	mg	*	0.13		0.13							
Masse de poussières après correction	mg	•	ND, <0.65	*	ND, <0.65							
SL4A: Quantité de poussières sur rinça	age											
pesée) Masse de poussières non corrigée	mg						0.11		0.52			
Correction appliquée	mg					*	-0.24		-0.24			
Incertitude de la mesure ±	mg					*	0.18		0.18			
Masse de poussières après correction	mg					*	D. <0.89	*	D. < 0.89			
Masse poussières corrigée sur volume total	mg					*	<0.89	•	< 0.89			
		Ť	Indice	es c	de pollu	tior	1					
.S24R : Dosage de l'acide	mg/Filtre		D, <0.03		D, < 0.03						1	
luorhydrique (HF) particulaire sur filtre après fusion alcaline NF CEN / TS 17340												
SH72: Acide chlorhydrique (HCI) /Chlo sur barbotage Chlorures (CI) solubles	mg CI/I									* <0.20		0.98 ±9%
Acide chlorhydrique (HCI)	µg/flacon									* ND. <43.9		111 ±9%
	**************************************						D		D, < 0.03	ND, C45.9		111 1970
.s26∟: Dosage de l'acide l'uorhydrique (HF) particulaire sur rinçage après fusion alcaline	mg/flacon						D, <0.03		D, <0.03			

Page 5/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

barbotage Fluorures

Acide fluorhydrique (HF)

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon			007		008		009		010	011	012
Référence client :		ı	E1 CI (B2)		E1 BS (Blanc)	ŧ	E1 S (B1)	1	E1 S (B2	E1 BF (Blanc)	E1 F (B1)
Matrice :			AIE		AIE		AIE		AIE	AIE	AIE
Date de prélèvement :			19/09/2023		19/09/2023	1	9/09/2023	1	9/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :			25/09/2023		25/09/2023	2	5/09/2023	2	5/09/2023	25/09/2023	25/09/2023
	1	Pré	paration	ı P	hysico-(Chi	mique				
LSG05 : Volume	ml	Т	94.0	г	245	Т	90.5	г	83.6	219	86.0
			Indice	es	de pollu	tior	n				
LSH72: Acide chlorhydrique (HCI)	/Chlorures	Т		г		Т		т			
sur barbotage Chlorures (CI) solubles	mg Cl/I		<0.20								
Acide chlorhydrique (HCI)	µg/flacon		ND, <19.3								
LSG01 : Dioxyde de soufre (SO2) : - norme NF EN 14791	sur barbotage										
Sulfate soluble	mg SO4/I				< 0.20		5.24 ±15%		< 0.20		
Dioxyde de soufre (SO2) total	µg/flacon			*	ND, <32.6	*	316 ±15%		D, <11.1		
ISH74 Acide fluorhydrigue (HF)	Fluorures sur										

Eurofins Analyses de l'Air - Etablissement de SAVERNE 5, rue d'Otterswiller - 67700 SAVERNE Tèl 03 88 911 911 - site web : www.eurofins.fr/environnement/analyses/air/ SAS au capital de 679 083 € - APE 7120B - RCS SAVERNE 844 919 993

µg/flacon

<0.1

ND, <23

< 0.1

Page 6/23

EUROFINS ANALYSES DE L'AIR

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079

Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

N° Echantillon		013		014		015		016	017	018
Référence client :	E	E1 F (B2)		E1 B NH (Blanc)	E1	NH (B1)	E	I NH (B2)	E0 C#134203+C #134176 (Blanc)	E0 C#134175+0 #134200
Matrice :		AIE		AIE		AIE		AIE	AIE	AIE
Date de prélèvement :	1	9/09/2023	1	9/09/2023	19	9/09/2023	1	9/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :	2	5/09/2023	2	5/09/2023	25	5/09/2023	2	5/09/2023	25/09/2023	25/09/2023
	Pré	paration	P	hysico-C	hir	nique				
SG05 : Volume ml		83.1	Т	210		78.8	Г	98.2		
		Indice	es	de pollut	ion					
SH74: Acide fluorhydrique (HF) / Fluorures sur arbotage Fluorures mg F/I		<0.1	Γ		T		Г			
Acide fluorhydrique (HF) µg/flacon		ND, <8.7								
SRAP : Ammonium (NH4) / Ammoniac (NH3) sur										
arbotage Ammonium mg NH4/	1			< 0.05		27.0 ±17%		0.31 ±17%		
Azote ammoniacal mg N/I			*	< 0.04	*	21.0 ±17%	*	0.24 ±17%		
Ammoniac (NH3) µg NH3/flac	on		*	ND, <9.91	*	2010 ±17%		28.5 ±17%		
Sous-traitance		STATE OF A COURSE	~.		30000W					

* ND.<0.00230 * 0.0313±30%
* ND, <0.00300 * 0.00881 ±30%
* ND, <0.00600 * D, <0.00600
* ND, <0.00600 * D, <0.00600
* D, <0.00680 * 0.0270 ±30%
* ND, <0.00600 * D, <0.00600
* ND, <0.00400 * 0.460 ±30%
* ND, <0.00550 * 0.140 ±30%
* ND, <0.00550 * 0.0663 ±30%
* ND, <0.00500 * 0.0173 ±30%
* ND, <0.00500 * 0.0163 ±30%

Eurofins Analyses de l'Air - Etablissement de SAVERNE 5, rue d'Otterswiller - 67700 SAVERNE Tèl 03 88 911 911 - site web : www.eurofins.fr/environnement/analyses/air/ SAS au capital de 679 083 € - APE 7120B - RCS SAVERNE 844 919 993

Page 7/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23

Nom Commande : BREP230079
Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon	013	014	015	016	017	018
Référence client :	E1 F (B2)	E1 B NH	E1 NH (B1)	E1 NH (B2)	E0	E0
		(Blanc)			C#134203+C	C#134175+C
					#134176	#134200
					(Blanc)	
Matrice :	AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023

Matrice : Date de prélèvement :		AIE 19/09/2023	AIE 19/09/2023	AIE 19/09/2023	AIE 19/09/2023	(Blanc) AIE 19/09/2023	AIE 19/09/2023
Date de début d'analyse :		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Sous-t	raitance	Eurofins (GfA Lab Se	rvice Gmb	h (Hambur	3)	
GFU01 : Dioxins(17 PCDD/F) ~ Enviror Air Prestation soustraitée à Eurofins G/A Lab Service G/ 17025:2018 Daikls D-PL-14629-01-00 1,2,3,7,8,9-HxCDF						* ND, <0.00500	* ND, <0.00500
2,3,4,6,7,8-HxCDF	ng/échantillon					* ND, <0.00500	* 0.00792 ±30%
1,2,3,4,6,7,8-HpCDF	ng/échantillon					* D, <0.00650	* 0.0252 ±30%
1,2,3,4,7,8,9-HpCDF	ng/échantillon					* ND, <0.00480	* D, <0.00480
OCDD	ng/échantillon					* ND, <0.0280	* D, <0.0280
OCDF	ng/échantillon					* ND, <0.0400	* ND, <0.0400
TR 13C12-2,3,7,8-TetraCDF	%					* 92.4	* 89.3
TR 13C12-2,3,4,7,8-PentaCDF	%					* 87.9	* 89.4
TR 13C12-1,2,3,4,7,8-HexaCDF	%					* 104	* 103
TR 13C12-1,2,3,6,7,8-HexaCDF	%					* 98.1	* 106
TR 13C12-2,3,4,6,7,8-HexaCDF	%					* 100	• 97.9
TR 13C12-1,2,3,4,6,7,8-HeptaCDF	96					* 92.2	* 100
RR 13C12-OctaCDF	%					* 96.5	* 101
TR 13C12-2,3,7,8-TetraCDD	%					* 92.6	* 89.1
TR 13C12-1,2,3,7,8-PentaCDD	%					• 95.4	* 90.4
TR 13C12-1,2,3,4,7,8-HexaCDD	%					* 100	* 96.7
TR 13C12-1,2,3,6,7,8-HexaCDD	%					* 108	* 97.9
RR 13C12-1,2,3,7,8,9-HexaCDD	%					100	* 100
TR 13C12-1,2,3,4,6,7,8-HeptaCDD	%					* 91.3	* 103
TR 13C12-OctaCDD	%					* 93.9	* 105
TR 13C12-1,2,3,4-TetraCDD	%					- 100	* 100
Dioxines et furanes (OMS 2005 PCDD/F- TEQ) avec LQ	ng/échantillon					* 0.0115 ±25%	* 0.117 ±25%
Dioxines et furanes (OMS 2005 PCDD/F- TEQ) sans LQ	ng/échantillon					* ND	* 0.115 ±25%

Eurofins Analyses de l'Air - Etablissement de SAVERNE 5, rue d'Otterswiller - 67700 SAVERNE Tèl 03 88 911 911 - site web : www.eurofins.fr/environnement/analyses/air/ SAS au capital de 679 083 € - APE 7120B - RCS SAVERNE 844 919 993 ACCREDITATION
Nº 1-6925
Portée disponible sur
www.cofrac.fr

Page 8/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon	013	014	015	016	017	018
Référence client :	E1 F (B2)	E1 B NH (Blanc)	E1 NH (B1)	E1 NH (B2)	E0 C#134203+C #134176 (Blanc)	E0 C#134175+C #134200
Matrice :	AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
Sous-traitance	Eurofins (GfA Lab Se	rvice Gmb	h (Hambur	g)	
GFU01 : Dioxins(17 PCDD/F) ~ Environnement -						
Air						
Prestation soustraitée à Eurofins GfA Lab Service GmbH DIN EN ISO/IE						
17025:2018 Dakks D-PL-14629-01-00 Dioxines et furanes (OMS 2005 PCDD/F- ng/echantillon					* 0.00576 ±25%	* 0.116 ±25%

Tx de réapparition 13C12-123789-HexaCDF %

Tx de réapparition 13C12-1234789-HptCDF %

I-TEO (NATO/CCMS) incl. 1/2 LOQ ng/échantillon

I-TEO (NATO/CCMS) sans LQ ng/échantillon

I-TEO (NATO/CCMS) avec LQ ng/échantillon

GFTE2: TEQ PCDD/F - NF X 43-551

Prestation soustraitée à Eurofins GfA Lab Service GmbH DIN EN ISO/IE

17025-2018 Dakks D-PL-14629-01-00

WHO(2005)-PCDD/F TEQ (NF X 43-551) ng/échantillon

I-TEO (NATO/CCMS) (NF X 43-551) ng/échantillon

Tx de réappartion 13C12-12378-PentaCDF

* 0.000665 * 0.129 * 0.000665 * 0.116 * 0.000665 * 0.128

101

98.0

96.3

ND

0.00564 ±25% *

107

110

107

0.128 ±25%

0.127 ±25%

Page 9/23

EUROFINS ANALYSES DE L'AIR

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° Echantillon Référence client :

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

019	020	021	022	023	024
E2 905043	E2 RC	E2 CI	E2 S	E2 F	E2 NH

 Matrice :
 AIE
 A

Date de début d'analyse :		27/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
	P	réparation	Physico-C	Chimique	Harata Assessment and Assessment		
LSG05 : Volume	mi		56 A	211	195	205	203
XXSJ7: Volume de rinçage	ml		60.9				
		Indice	s de pollut	ion			
LS24R: Dosage de l'acide fluorhydrique (HF) particulaire sur filtre après fusion alcaline NF CEN / TS 17340	mg/Filtre	* D, <0.03					
LSH72: Acide chlorhydrique (HCI) I sur barbotage Chlorures (CI) solubles	Chlorures mg Cl/I			* 1.63 ±9%			
Acide chlorhydrique (HCI)	µg/flacon			* 353 ±9%			
LSG01: Dioxyde de soufre (SO2) su - norme NF EN 14791 Sulfate soluble	ır barbotage mg SO4/I				10.2 ±15%		
Dioxyde de soufre (SO2) total	µg/flacon				* 1320 ±15%		
LSH74: Acide fluorhydrique (HF) / f barbotage Fluorures Acide fluorhydrique (HF)	mg F/I					* <0.1 * ND, <22	
LSRAP : Ammonium (NH4) / Ammor						110, 122	
barbotage Ammonium	mg NH4/I						4.90 ±17%
Azote ammoniacal	mg N/I						* 3.81 ±17%
Ammoniac (NH3)	µg NH3/flacon						* 941 ±17%
LS26L : Dosage de l'acide fluorhydrique (HF) particulaire sur rinçage après fusion alcaline	mg/flacon		* D,<0.03				

Page 10/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon		025	026	027	028	029	030
Référence client :		E3 905241	E3 RC	E3 RCF (Blanc)	E3 CI	E3 S	E3 F
Matrice :		AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :		27/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
	F	réparation	Physico-C	himique			
LSG05: Volume	ml				206	191	192
XXSJ7: Volume de rinçage	mI		63.7	37.8			
		Mesures	gravimétr	iques			
LSL4A : Quantité de poussières sur rinç (pesée)	age						
Masse de poussières non corrigée	mg			* -0.55			
Correction appliquée	mg			* 0.16			
Incertitude de la mesure ±	mg			* 0.18			
Masse de poussières après correction	mg			* ND, <0.89			
Masse poussières corrigée sur volume total	mg			* <0.89			
		Indice	s de pollut	ion			
LS24R : Dosage de l'acide fluorhydrique (HF) particulaire sur filtre après fusion alcaline	mg/Filtre	* D, <0.03					
NF CEN / TS 17340							
.SH72: Acide chlorhydrique (HCI) /Chlo sur barbotage	orures						
Chlorures (CI) solubles	mg CI/I				* 1.64 ±9%		
Acide chlorhydrique (HCI)	µg/flacon				* 348 ±9%		
SG01 : Dioxyde de soufre (SO2) sur ba	rbotage						
norme NF EN 14791	1010 14 G-17						
Sulfate soluble	mg SO4/I					8.01 ±15%	

Eurofins Analyses de l'Air - Etablissement de SAVERNE 5, rue d'Otterswiller - 67700 SAVERNE 7èl 03 88 911 911 - 51te web : www.eurofins.fr/environnement/analyses/air/ SAS au capital de 679 083 € - APE 7120B - RCS SAVERNE 844 919 993

µg/flacon

mg F/I

µg/flacon

Dioxyde de soufre (SO2) total

Acide fluorhydrique (HF)

barbotage Fluorures

LSH74: Acide fluorhydrique (HF) / Fluorures sur

1020 ±15%

Page 11/23

EUROFINS ANALYSES DE L'AIR

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

mg/flacon

N° Echantillon	025	026	027	028	029	030
Référence client :	E3 905241	E3 RC	E3 RCF (Blanc)	E3 CI	E3 S	E3 F
Matrice :	AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :	27/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023

Indices de pollution

LS26L: Dosage de l'acide fluorhydrique (HF) particulaire sur rinçage après fusion

D,<0.03 D, <0.03

Page 12/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23

Nom Commande : BREP230079
Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023 Date de réception technique : 22/09/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon		031	032		033	034	035	036
Référence client :		E3 NH	E4 9023 (Bland		E4 707227	E4 RC	E4 RCF (Blanc)	E4 BM (Blanc)
Matrice :		AIE	AIE	•	AIE	AIE	AIE	AIE
Date de prélèvement :		19/09/2023	19/09/20	023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :		25/09/2023	25/09/20	023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
	Pr	éparation	Physic	o-Ch	imique			
SOPO : Minéralisation de						Fait	Fait	
inçage HF/HNO3			Fal		Fait			
SB03: Minéralisation HF/HNO3	mI		Fdl		Falt	52.6	36.3	
(XSJ8: Volume de rinçage	mi	224				32.6	36.3	257
_SG05 ; Volume	1017							201
		Indice	s de po	llutio	n			
SRAP: Ammonium (NH4) / Ammo	niac (NH3) sur							
parbotage Ammonium	mg NH4/I	4.16 ±17%						
Azote ammoniacal	mg N/I *	4.10 ±17% 3.24 ±17%						
Ammoniac (NH3)	µg NH3/flacon *							
_1004-2000000 000000 0000000	14	Métaux	et méta	alloïd	AS			
	10000	motuux						
_SH06 : Antimoine (Sb) (Filtre)	µg/Filtre		* ND, <0		ND, <0.25			
SH08: Arsenic (As) (Filtre)	μg/Filtre		* ND, <0		ND, <0.25			
SH13: Cadmium (Cd) (Filtre)	μg/Filtre		* ND, <0		ND, <0.10			
SH14: Chrome (Cr) (Filtre)	μg/Filtre		1.48		1.67 ±5%			
SH15: Cobalt (Co) (Filtre)	μg/Filtre		* ND, <(ND, <0.10			
SH 16: Cuivre (Cu) (Filtre)	µg/Filtre		* ND, <1		ND, <1.00			
SH19: Manganèse (Mn) (Filtre)	μg/Filtre		* 1.62 :		0.96 ±25% 1.90 ±15%			
SH21: Nickel (Ni) (Filtre)	µg/Filtre		* D.<0					
_SH22 : Plomb (Pb) (Filtre)	µg/Filtre		* ND.<0		D, <0.25			
SH26: Thallium (TI) (Filtre)	µg/Filtre				ND, <0.10			
SH29: Vanadium (V) (Filtre)	μg/Filtre μg/Filtre		* ND.<0		ND, <0.10			
SH60: Mercure (Hg)	A.C.		ND, <0	.100	ND, <0.100			
.SG78 : Antimoine (Sb) (Barbotage Antimoine (Sb)	μg/l							* <0.200
Antimoine (Sb)	µg/flacon							* ND, <0.05
Antimoine (Sb)	μg/l							

Page 13/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande : BREP230079

Référence Commande : BREP230079/SEN/19-09-23

µg/flacon

µg/flacon

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon		031	032	033	034	035	036
Référence client :		E3 NH	E4 902387 (Blanc)	E4 707227	E4 RC	E4 RCF (Blanc)	E4 BM (Blanc)
Matrice :		AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :		25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
		Métaux	et métallo	ïdes			
LSG80 : Arsenic (As) (Barbotage) Arsenic (As)	µg/l						* <0.200
Arsenic (As)	µg/flacon						* ND, <0.051
LSG85 : Cadmium (Cd) (Barbotage)							
Cadmium (Cd)	µg/l						* <0.200
Cadmium (Cd)	µg/flacon						* ND, <0.051
LSG86 : Chrome (Cr) (Barbotage) Chrome (Cr)	ua/l						* <0.500

LSG88 : Cuivre (Cu) (Barbotage) Cuivre (Cu) µg/l Cuivre (Cu) µg/flacon LSG91 : Manganèse (Mn) (Barbotage) Manganèse (Mn) µg/l Manganése (Mn) ug/flacon LSG93: Nickel (Ni) (Barbotage) Nickel (Ni) µg/l Nickel (Ni) µg/fiacon LSG94 : Plomb (Pb) (Barbotage) Plomb (Pb) µg/l Plomb (Pb) µg/flacon LSG98 : Thallium (TI) (Barbotage) µg/l µg/flacon LSH02: Vanadium (V) (Barbotage)

Chrome (Cr)

Cobalt (Co)

LSG87: Cobalt (Co) (Barbotage)

Vanadium μg/l Vanadium (V) μg/flacon

ACCREDITATION Nº 1-6925 Portée disponible sur www.cofrac.fr

ND, <0.128

< 0.200

ND, <0.051

< 0.500

< 0.500

ND. <0.128

< 2.00

D. < 0.513

< 0.500

ND, <0.128

<0.500 ND, <0.128

< 0.200

ND, <0.051

ND, <0.128

Page 14/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23

Nom Commande : BREP230079
Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon	031	032	033	034	035	036
Référence client :	E3 NH	E4 902387 (Blanc)	E4 707227	E4 RC	E4 RCF (Blanc)	E4 BM (Blanc)
Matrice :	AIE	AIE	AIE	AIE	AIE	AIE
Date de prélèvement :	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
	Métaux	et métallo	ïdes			
LS0MW; Antimoine (Sb)	µg/flacon			* ND, <0.31	* ND, <0.34	

LS0MW; Antimoine (Sb) (Rinçage)	µg/flacon	•	ND, <0.31	*	ND, <0.34
LSOMY: Arsenic (As) (Rinçage)	µg/flacon		ND, <0.31	*	ND, <0.34
LS0N3: Cadmium (Cd) (Rinçage)	μg/flacon		ND, <0.12	*	ND, <0.14
LS0N4: Chrome (Cr) (Rinçage)	µg/flacon	•	ND, <0.31	*	ND, < 0.34
LS0N5: Cobalt (Co) (Rinçage)	µg/flacon		ND, <0.12	*	ND, <0.14
LS0N6: Cuivre (Cu) (Rinçage)	µg/flacon		5.3 ±11%	*	ND, <1.4
LS0N9 : Manganèse (Mn) (Rinçage)	μg/flacon	•	0.32 ±25%	*	ND, <0.14
LSONB : Nickel (Ni) (Rinçage)	μg/flacon		D, <1.2	*	ND, <1.4
LSONC: Plomb (Pb) (Rinçage)	µg/flacon		0.58 ±11%	*	ND, <0.34
LSONG: Thallium (TI) (Rinçage)	µg/flacon		ND, <0.12	*	ND, <0.14
LSONJ : Vanadium (V) (Rinçage)	μg/flacon	*	ND, <0.12	¥.	ND, <0.14
LSWI: Mercure (Hg) (Rinçage) Mercure (Hg)	μg/Ι		< 0.50		<0.50
Mercure	µg/flacon	*	ND, <0.03	*	ND, <0.02

Page 15/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23

Nom Commande : BREP230079
Référence Commande : BREP230079/SEN/19-09-23

Version du : 05/10/2023

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

N° Echantillon			037		038	039	040	041	042
Référence client :			E4 M (B1+B2)		E4 M (B3)	E4 BHg (Blanc)	E4 Hg (B1+B2)	E4 Hg (B3)	E4 BC (Blanc)
Matrice :			AIE		AIE	AIE	AIE	AIE	AIE
Date de prélèvement :		1	19/09/2023		19/09/2023	19/09/2023	19/09/2023	19/09/2023	19/09/2023
Date de début d'analyse :		2	25/09/2023	9	25/09/2023	25/09/2023	25/09/2023	25/09/2023	25/09/2023
	1	Pré	paration	P	hysico-C	himique			
LS0P0 : Minėralisation de rinçage HF/HNO3 XXSJ8 : Volume de rinçage	mI			Γ					Fait 37.9
LSG05 : Volume	mt		214		108	219	243	113	
			Métaux	(e	t métallo	ïdes			
LSG78 : Antimoine (Sb) (Barbotage)	10000000								
Antimoine (Sb)	µд/1		0.345 ±24%		0.245 ±27%				
Antimoine (Sb)	µg/flacon	•	0.074 ±24%	•	0.026 ±27%				
LSG80 : Arsenic (As) (Barbotage) Arsenic (As)	µд/1		<0.200	*	< 0.200				
Arsenic (As)	µg/flacon		ND, <0.043	*	ND, <0.022				
LSG85 : Cadmium (Cd) (Barbotage) Cadmium (Cd)	µд/1		<0.200		<0.200				
Cadmium (Cd)	µg/flacon		ND, <0.043		D,<0.022				
LSG86 : Chrome (Cr) (Barbotage) Chrome (Cr)	µg/l		1.54 ±10%		0.635 ±10%				
Chrome (Cr)	µg/flacon	•	0.329 ±10%	*	0.069 ±10%				
LSG87 : Cobalt (Co) (Barbotage) Cobalt (Co)	µg/l		<0.200		< 0.200				
Cobalt (Co)	µg/flacon		ND, <0.043	*	ND, <0.022				
LSG88 : Cuivre (Cu) (Barbotage) Cuivre (Cu)	µg/l		<0.500		< 0.500				
Culvre (Cu)	µg/flacon		D, <0.107	*	D, < 0.054				
LSG91 : Manganèse (Mn) (Barbotage) Manganèse (Mn)	µд/І		1.13 ±12%		0.59 ±21%				
Manganèse (Mn)	µg/flacon		0.241 ±12%		0.064 ±21%				
LSG93 : Nickel (Ni) (Barbotage) Nickel (Ni)	μg/I		4 32 +19%		4.02 ±20%				
Transfer (TT)	19		4.52 119%		4.02 120%				

0.924 ±19% *

0.434 ±20%

Eurofins Analyses de l'Air - Etablissement de SAVERNE 5, rue d'Otterswiller - 67700 SAVERNE Tèl 03 88 911 911 - site web : www.eurofins.fr/environnement/analyses/air/ SAS au capital de 679 083 € - APE 7120B - RCS SAVERNE 844 919 993

µg/flacon

Nickel (Ni)

Page 16/23

EUROFINS ANALYSES DE L'AIR

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23

Nom Commande : BREP230079
Référence Commande : BREP230079/SEN/19-09-23

N° Echantillon			037		038		039		040		041		042
Référence client :			E4 M (B1+B2)		E4 M (B3)		E4 BHg (Blanc)		E4 Hg (B1+B2)	E	4 Hg (B3)		E4 BC (Blanc)
Matrice :			AIE		AIE		AIE		AIE		AIE		AIE
Date de prélèvement :		1	9/09/2023		19/09/2023	1	9/09/2023		19/09/2023	1	9/09/2023	1	9/09/2023
Date de début d'analyse :		2	25/09/2023	9	25/09/2023	2	5/09/2023	2	25/09/2023	2	5/09/2023	2	5/09/2023
			Métaux	(e	t métallo	ïd	es						
LSG94 : Plomb (Pb) (Barbotage)				2		Т		Г		Т		Г	
Plomb (Pb)	µд/І		<0.500		< 0.500								
Plomb (Pb)	µg/flacon		D, <0.107	-	ND, <0.054								
_SG98 : Thallium (TI) (Barbotage) Thallium (TI)	µд/1		<0.500		< 0.500								
Thallium (TI)	µg/flacon		ND, <0.107		ND, <0.054								
SH02: Vanadium (V) (Barbotage) Vanadium	μg/l		<0.200		< 0.200								
∨anadium (∨)	µg/flacon		ND, <0.043	*	ND, <0.022								
S17X : Mercure (Hg) (Barbotage													
permanganate) Volume corrigé	mI						204		227		105		
Mercure (Hg)	μд/Ι					*	<1.00	*	2.41 ±22%	*	<1.00		
Mercure (Hg)	µg/flacon					*	ND, <0.20	٠	0.55 ±22%		ND, <0.11		
_S0MW : Antimoine (Sb)	µg/flacon											٠	ND, <0.34
(Rinçage)	00/42/00/2009												80025 (18020-28)
_SOMY : Arsenic (As) (Rinçage)	µg/flacon												ND, <0.34
SON3: Cadmium (Cd) (Rinçage)	µg/flacon												ND, <0.13
S0N4: Chrome (Cr) (Rinçage)	µg/flacon												ND, <0.34
_S0N5: Cobalt (Co) (Rinçage)	µg/flacon												ND, <0.13
Sone: Cuivre (Cu) (Rinçage)	µg/flacon												ND, <1.3
_S0N9 : Manganèse (Mn) (Rinçage)	µg/flacon											ā	ND, <0.13
LSONB : Nickel (Ni) (Rincage)	µg/flacon											*	ND, <1.3
SONC: Plomb (Pb) (Rinçage)	µg/flacon											*	ND, <0.34
SONG: Thallium (TI) (Rinçage)	µg/flacon											٠	ND, <0.13
SONJ : Vanadium (V) (Rinçage)	µg/flacon											*	ND, <0.13
ടയା : Mercure (Hg) (Rinçage)	\$15000000000000000000000000000000000000												
Mercure (Hg)	µg/l												<0.50
Mercure	µg/flacon											53	ND, <0.02

Page 17/23

EUROFINS ANALYSES DE L'AIR

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande: BREP230079

Référence Commande : BREP230079/SEN/19-09-23

Nº Echantillon

043 E3 BFNH

Référence client :

Matrice:

(Blanc)

Date de prélèvement : Date de début d'analyse

19/09/2023 25/09/2023

Préparation Physico-Chimique

LSG05 : Volume ml

Indices de pollution

LSRAP: Ammonium (NH4) / Ammoniac (NH3) sur

barbotage Ammonium

mg NH4/I < 0.05

Azote ammoniacal

mg N/I < 0.04

Ammoniac (NH3)

µg NH3/flacon * ND, <11.8

D : détecté / ND : non détecté z2 ou (2) : zone de contrôle des supports

Observations
Mercure gazeux : La concentration massique en µg/flacon est calculée en tenant compte de la masse volumique de la solution d'acide de permanganate de potassium définie dans la norme EN 13211. Dans le cas où vous n'auriez pas utilisé la solution fournie par nos soins ou suivi un protocole différent de celui prévu dans la norme, la concentration en µg/flacon indiquée est incorrecte.
µg/nacon indiquee est incorrecte.

N° d'échantillon Référence client (039) (040) (041) E4 BHg (Blanc) / E4 Hg (B1+B2) / E4 Hg (B3) /

> ACCREDITATION. Nº 1-6925 Portée disponible su www.cofrac.fr

Page 18/23

EUROFINS ANALYSES DE L'AIR

RAPPORT D'ANALYSE

Version du : 05/10/2023

Dossier N°: 23R018844

N° de rapport d'analyse : AR-23-N8-020645-01

Référence Dossier : N° Projet : BREP230079 Nom Projet : BREP230079/SEN/19-09-23 Nom Commande: BREP230079

Référence Commande : BREP230079/SEN/19-09-23

Date de réception technique : 22/09/2023 Première date de réception physique : 22/09/2023

Marjorie Grimault

Coordinatrice Projets Clients EAA

La reproduction de ce document n'est autorisée que sous sa forme intégrale. Il comporte 23 page(s). Le présent rapport ne concerne que les objets soumis à l'essai. Les résultats et conclusions éventuelles s'appliquent à l'échantilion tel qu'il a été reçu. Les données transmises par le client pouvant affecter la validité des résultats (la date de prélèvement, la matrice, la référence échantilion et autres informations identifiées comme provenant du client), ne sauraient engager la responsabilité du laboratoire. Seules certaines prestations rapportées dans ce document sont couvertes par l'accréditation. Elles sont identifiées par le symbole *.

L'information relative au seuil de détection d'un paramètre n'est pas couverte par l'accréditation Cofrac

Les résultats précèdés du signe < correspondent aux limites de quantification, elles sont la responsabilité du laboratoire et fonction de la matrice.

Tous les élèments de traçabilité et incertitude (déterminée avec k = 2) sont disponibles sur demande.

Dans le cas d'analyse d'Air à l'Emission : Laboratoire agréé par le ministre chargé des installations classées conformément à l'arrêté du 11 Mars 2010. Mention des types d'analyses pour les quels l'agrément a été délivré sur ; www.eurofins.fr ou disponible sur demande

Page 19/23

EUROFINS ANALYSES DE L'AIR

Annexe technique

N° de rapport d'analyse : AR-23-N8-020645-01 Dossier N°:23R018844

Emetteur : Salomé ESNAULT Commande EOL: 006-10514-1053131

Nom projet : N° Projet : BREP230079 BREP230079/SEN/19-09-23 Nom Commande: BREP230079

Référence commande : BREP230079/SEN/19-09-23

Air Emission

Code	Analyse	Principe et référence de la méthode	LQI	Incertitude à la LQ	Unité	Prestation réalisée sur le site de :
FTE2	TEQ PCDD/F - NF X 43-551 WHO (2005)-PCDD/F TEQ (NF X 43-551)	Calcul - Méthode interne			g/kg	Prestation soustraitée à Eurofins Gt Lab Service GmbH
	I-TEQ (NATO/CCMS) (NF X 43-551)		1		g/kg g/kg	
3FU01	Dioxins(17 PCDD/F) - Environnement - Air	GC/HRMS - DIN EN 1948-4: 2010-12	-		373	
31001	2,3,7,8-TCDD	GG/HKM3 - Blid Eld 1946-4, 2010-12	0.00225	30%	ng/échantillon	
	1,2,3,7,8-PeCDD		0.003	30%	ng/échantillon	
	1,2,3,4,7,8-HxCDD		0.006	30%	ng/échantillon	
	1,2,3,6,7,8-HxCDD		0.006	30%	ng/échantillon	
	1,2,3,4,6,7,8-HpCDD		0.00675	30%	ng/échantillon	
	1,2,3,7,8,9-HxCDD		0.006	30%	ng/échantillon	
	2,3,7,8-TCDF		0.004	30%	ng/échantillon	
	1,2,3,7,8-PeCDF		0.0055	30%	ng/échantillon	
	2,3,4,7,8-PeCDF		0.0055	30%	ng/échantillon	
	1,2,3,4,7,8-HxCDF		0.005	30%	ng/échantillon	
	1,2,3,6,7,8-HxCDF		0.005	30%	ng/échantillon	
	1,2,3,7,8,9-HxCDF		0.005	30%	ng/échantillon	
	2,3,4,6,7,8-HxCDF		0.005	30%	ng/échantillon	
	1,2,3,4,6,7,8-HpCDF		0.0065	30%	ng/échantillon	
	1,2,3,4,7,8,9-HpCDF		0.00475	30%	ng/échantillon	
	OCDD		0.0275	30%	ng/échantillon	
	OCDF		0.04	30%	ng/échantillon	
	TR 13C12-2,3,7,8-TetraCDF				%	
	TR 13C12-2,3,4,7,8-PentaCDF				%	
	TR 13C12-1,2,3,4,7,8-HexaCDF		1		%	
	TR 13C12-1,2,3,6,7,8-HexaCDF				%	
	TR 13C12-2,3,4,6,7,8-HexaCDF		1		96	
	TR 13C12-1,2,3,4,6,7,8-HeptaCDF				%	
	RR 13C12-OctaCDF				%	
	TR 13C12-2,3,7,8-TetraCDD				%	
	TR 13C12-1,2,3,7,8-PentaCDD				%	
	TR 13C12-1,2,3,4,7,8-HexaCDD				%	
	TR 13C12-1,2,3,6,7,8-HexaCDD				%	
	RR 13C12-1, 2, 3, 7, 8, 9-HexaCDD				%	l

Page 20/23

EUROFINS ANALYSES DE L'AIR

Annexe technique

N° de rapport d'analyse : AR-23-N8-020645-01 Dossier N°:23R018844

Emetteur: Salomé ESNAULT Commande EOL: 006-10514-1053131

Nom projet : N° Projet : BREP230079 BREP230079/SEN/19-09-23 Nom Commande: BREP230079

Référence commande : BREP230079/SEN/19-09-23

Code	Analyse	Principe et référence de la méthode	LQI	Incertitude à la LQ	Unité	Prestation réalisée sur le site de :
	TR 13C12-1,2,3,4,6,7,8-HeptaCDD			authores in the	%	
	TR 13C12-OctaCDD				- %	
	TR 13C12-1,2,3,4-TetraCDD				%	
	Dioxines et furanes (OMS 2005 PCDD/F- TEQ) avec LQ Dioxines et furanes (OMS 2005 PCDD/F- TEQ) sans LQ Dioxines et furanes (OMS 2005 PCDD/F- TEQ) 1/2 LQ Tx de réapoartion 13C12-12378-PentaCD				ng/échantillon ng/échantillon ng/échantillon %	
	Tx de réapparition 13C12-123789-HexaCE				%	
	Tx de réapparition 13C12-1234789-HptCD I-TEO (NATO/CCMS) incl. 1/2 LOQ				% ng/échantillon	
	I-TEQ (NATO/CCMS)) sans LQ				ng/échantillon	
	I-TEQ (NATO/CCMS) avec LQ				ng/échantillon	
SOJI	Mercure (Hg) (Rinçage)	SFA / vapeurs froides (CV-AAS) -			第三	Eurofins Analyses de l'Air
	Mercure (Hd)	Méthode interne - NF EN 13211	0.5	25%	μд/	
	Mercure Mercure		0.5	25.0	µg/flacon	
LSOMW	Antimoine (Sb) (Rincage)	ICP/MS - NF EN 14385	0.25	19%	µg/flacon	
LSOMY	Arsenic (As) (Rinçage)	TOPING - NF EN 14363	0.25	25%	µg/flacon	
LSOM T	Cadmium (Cd) (Rincage)		0.1	30%	µg/flacon	
LSON4	Chrome (Cr) (Rincage)		0.25	15%	µg/flacon	
LSON5	Cobalt (Co) (Ringage)		0.1	20%	µg/flacon	
20N6	Culvre (Cu) (Pincage)		1	20%	µg/flacon	
LS0N9	Manganèse (Mn) (Rinçage)		0.1	26%	ug/flacon	
LSONB	Nickel (Ni) (Rinçage)		1	16%	µg/flacon	
LSONC	Plomb (Pb) (Rincage)		0.25	15%	µg/flacon	
LSONG	Thallium (TI) (Rinçage)		0.1	10%	µg/flacon	
LSONJ	Vanadium (V) (Rinçage)		0.1	10%	µg/flacon	
LS0P0	Minéralisation de rinçage HF/HNO3	Digestion micro-ondes - Méthode interne				
LS17X	Mercure (Hg) (Barbotage permanganate)	SFA / vapeurs froides (CV-AAS) - Méthode interne - NF EN 13211		N AV	ml	
	Volume corrigé Mercure (Ha)		1	30%	889)	
	Mercure (Hg)		3	30%	µg/l µg/flacon	
			0.07	33%		
LS24R	Dosage de l'acide fluorhydrique (HF) particulaire sur filtre après fusion alcaline NF CEN / TS 17340	Potentiométrie (ESI) [Dosage par ionométrie] - NF CEN / TS 17340	0.03	3370	mg/Filtre	

Page 21/23

EUROFINS ANALYSES DE L'AIR

Annexe technique

Dossier N° :23R018844 N° de rapport d'analyse : AR-23-N8-020645-01

Emetteur : Salomé ESNAULT Commande EOL : 006-10514-1053131

Nom projet : N° Projet : BREP230079 BREP230079/SEN/19-09-23 Nom Commande : BREP230079 Référence commande : BREP230079/SEN/19-09-23

Air Emission

Code	Analyse	Principe et référence de la méthode	LQI	incertitude à la LQ	Unité	Prestation réalisée sur le site de :
LS26L	Dosage de l'acide fluorhydrique (HF) particulaire sur rinçage après fusion alcaline	Potentiométrie (ESI) - NF CEN / TS 17340	0.03	33%	mg/flacon	
LSB03	Minéralisation HF/HNO3	Digestion micro-ondes-				1
LSG01	Dioxy de de soufre (SO2) sur barbotage - norme NF EN 14791 Suffate soluble Dioxy de de soufre (SO2) total	Chromatographie ionique - Conductimétrie - NF EN 14791	0.2	17%	mg SO4/I µg/flacon	
LSG05	Volume	Gravimétrie - Méthode interne			ml	1
LSG78	Antimoine (Sb) (Barbotage) Antimoine (Sb) Antimoine (Sb)	ICP/MS- NF EN 14385	0.2	30%	µg/l µg/flacon	
LSG80	Arsenic (As) (Barbotage) Arsenic (As) Arsenic (As)		0.2	25%	µg/l µg/flacon	
LSG85	Cadmium (Cd) (Barbotage) Cadmium (Cd) Cadmium (Cd)		0.2	20%	µg/l µg/flacon	
LSG86	Chrome (Cr) (Barbotage) Chrome (Cr) Chrome (Cr)		0.5	10%	µg/l µg/flacon	
LSG87	Cobalt (Co) (Barbotage) Cobalt (Co) Cobalt (Co)		0.2	15%	hāų hāva hāva hāva hāva hāva hāva hāva hāva	
LSG88	Culvre (Cu) (Barbotage) Culvre (Cu) Culvre (Cu)		0.5	25%	µg/I µg/lacon	
LSG91	Manganèse (Mn) (Barbotage) Manganèse (Mn) Manganèse (Mn)		0.5	25%	µg/li µg/llacon	
LSG93	Nickel (Ni) (Barbotage) Nickel (Ni) Nickel (Ni)		2	30%	µg/l µg/flacon	1
LSG94	Plomb (Pb) (Barbotage) Plomb (Pb) Plomb (Pb)	1	0.5	25%	µg/l µg/flacon	1
LSG98	Thallium (TI) (Barbotage) Thallium (TI)		0.5	25%	µg/l	1

Page 22/23

EUROFINS ANALYSES DE L'AIR

Annexe technique

N° de rapport d'analyse : AR-23-N8-020645-01 Dossier N°:23R018844

Emetteur: Salomé ESNAULT Commande EOL: 006-10514-1053131

Nom projet : N° Projet : BREP230079 BREP230079/SEN/19-09-23 Nom Commande: BREP230079

Référence commande : BREP230079/SEN/19-09-23

Air Emission

Code	Analyse Thallium (Ti)	Principe et référence de la méthode	LQI	Incertitude à la LQ	Unité µg/fiacon	Prestation réalisée sur le site de :
LSH02	Vanadium (V) (Barbotage) Vanadium Vanadium (V)		0.2	20%	µg/l µg/flacon	
LSH06	Antimoine (Sb) (Fiftre)	+	0.25	19%	µg/Filtre	1
LSH08	Arsenic (As) (Filtre)	1	0.25	25%	μg/Filtre	1
LSH13	Cadmium (Cd) (Filtre)	+	0.1	30%	µg/Filtre	1
SH14	Chrome (Cr) (Filtre)	+	0.25	15%	µg/Filtre	1
LSH15	Cobalt (Co) (Filtre)	1	0.1	20%	µg/Filtre	t
LSH16	Culvre (Cu) (Filtre)	+	1	20%	µg/Filtre	†
LSH19	Manganèse (Mn) (Filtre)	+	0.1	26%	µg/Filtre	1
LSH21	Nickel (Ni) (Filtre)	1	1	16%	µg/Filtre	†
LSH22	Plomb (Pb) (Filtre)	1	0.25	15%	µg/Filtre	1
SH26	Thallium (TI) (Filtre)	+	0.1	10%	µg/Filtre	†
LSH29	Vanadium (V) (Filtre)	1	0.1	10%	µg/Filtre	t
LSH60	Mercure (Hg)	SFA / v apeurs froides (CV-AAS) [M inéralisation du fitre] - Méthode interne - NF EN 13211	0.1	25%	µg/Filtre	1
LSH72	Acide chlorhydrique (HCI) /Chlorures sur barbotage Chlorures (CI) solubles Acide chlorhydrique (HCI)	Chromatographie ionique - Conductimètrie [Tratement de la solution d'absorption] - NF EN 1911	0.2	25%	mg Cl/l µg/flacon	
LSH74	Acide fluorthydrique (HF) / Fluorures sur barbotage Fluorures Acide fluorthydrique (HF)	Potentiométrie (ESI) [Dosage par lonométrie] - NF ISO 15713 - NF CEN / TS 17340	0.1	21%	mg F/I µg/flacon	
LSL49	Poussière sur filtre supérieur à 50mm Masse de poussières non corrigée Correction appliquée Incertitude de la mesure ± Masse de poussières après correction Quantité de poussières sur rinçage (pesée)	Gravimétrie [Température étuvage avant prélèvement 200°C Température étuvage après prélèvement 160°C] - NF X 44-052 - NF EN 13284-1	0.65		mg mg mg mg	
	Masse de poussières non corrigée Correction appliquée				mg mg	

Page 23/23

EUROFINS ANALYSES DE L'AIR

Annexe technique

Dossier N° :23R018844 N° de rapport d'analyse : AR-23-N8-020645-01

Emetteur : Salomé ESNAULT Commande EOL : 006-10514-1053131

Nom projet : N° Projet : BREP230079 BREP230079/SEN/19-09-23 Nom Commande : BREP230079 Référence commande : BREP230079/SEN/19-09-23

Air Emission

Code	Analyse	Principe et référence de la méthode	LQI	Incertitude à la LQ	Unité	Prestation réalisée sur le site de :
	Incertitude de la mesure ±				mg	
	Masse de poussières après correction		0.89		mg	
	Masse poussières corrigée sur volume tot:				mg	
LSRAP	Ammonium (NH4) / Ammoniac (NH3) sur barbotage	Chromatographie ionique - Conductimétrie - NF EN ISO 21877		1		
	Ammonium	Conductmente - NF EN 150 21677	0.05	26%	mg NH4/I	
	Azote ammoniacal				mg N/I	
	Ammoniac (NH3)				ug NH3/flacor	
(XSJ7	Volume de rinçage	Gravimétrie -			mi	
(XSJ8	Volume de rinçage	1			ml	

Eurofins GfA Lab Service GmbH Neuländer Kamp 1a D-21079 Hamburg GERMANY

> Tel: +49 40 49294 5050 Fax: +49 40 49294 5009

> > dioxins@eurofins.de

Eurofins GfA Lab Service GmbH · Neuländer Kamp 1a · D-21079 Hamburg

www.dioxine.de; www.dioxins.de

Eurofins Analyses de l'Air attn. Reports 5 rue d'Otterswiller 67700 SAVERNE FRANKREICH

Person in charge Dr. M. Ambrosius

Dr. M. Ambrosius

Report date 04.10.2023

Page 1/3

(#)

Analytical report AR-23-GF-035104-01

Sample Code 710-2023-25381001

¹Reference Emission

E0 C#134203+C#134176 (Blanc) -¹Sample sender Reports Reception date time 26.09.2023 Transport by Line Haul ¹Client Purchase order nr. EUFR7700011361 ¹Purchase order date 27.09.2023 23R018844-017 ¹Client sample code

Number of containers Reception temperature room temperature 04.10.2023 End analysis

Test results

GFU01 Method	polychlorinated dibenzodioxins ar EN 1948*, GLS DF 140:2022-11-	nd -furans (17 PCDD/F): emission, imm	nission, air (°) (
	-TetraCDD	(not det.) < 0,00230	ng/sample
1,2,3,7	,8-PentaCDD	(not det.) < 0,00300	ng/sample
1,2,3,4	,7,8-HexaCDD	(not det.) < 0,00600	ng/sample
1,2,3,6	,7,8-HexaCDD	(not det.) < 0,00600	ng/sample
1,2,3,7	,8,9-HexaCDD	(not det.) < 0,00600	ng/sample
1,2,3,4	,6,7,8-HeptaCDD	(det.) < 0,00680	ng/sample
OctaCE	DD	(not det.) < 0,0280	ng/sample

The results of examination refer exclusively to the checked samples.

Any publication of this report requires written permission. An except publication is not allowed.

Euroffice OFALD Service OmbH. Neulinder Kamp 1 a. D-21070 Hamburg

Has deputates: Eurofice OFAL ab Service OmbH.— Neulinder Kamp 1 a D-21076 Hamburg

HR8 115007 Ab Hamburg

General Managers 10: Fall Fock

Var Hill. DEZ7021021272

Var Hill. DEZ702102172

Hyperverinibates 4 except code: 207 300 17 * Account No.: 7000002400 * SWIFT-BIC: HYVEDEMMET/

BMH. DET 2073 00 17 7000 002440

Accredited testing Laboratory by DIN EN ISO/IEC DAkkS according to DIN EN ISO/IEC 17025:2018

Describe
ANAMA A registers
The accreditation is valid only for the scope listed in the annex of the

^{4.} This information was provided by the customer. Data provided by the customer may have an impact on the validity of the test results.

Page 2/3

Analytical report AR-23-GF-035104-01 Sample Code 710-2023-25381001

GfA Lab Service

2,3,7,8-TetraCDF	(not det.) < 0,00400	ng/sample
1,2,3,7,8-PentaCDF	(not det.) < 0,00550	ng/sample
2,3,4,7,8-PentaCDF	(not det.) < 0,00550	ng/sample
1,2,3,4,7,8-HexaCDF	(not det.) < 0,00500	ng/sample
1,2,3,6,7,8-HexaCDF	(not det.) < 0,00500	ng/sample
1,2,3,7,8,9-HexaCDF	(not det.) < 0,00500	ng/sample
2,3,4,6,7,8-HexaCDF	(not det.) < 0,00500	ng/sample
1,2,3,4,6,7,8-HeptaCDF	(det.) < 0,00650	ng/sample
1,2,3,4,7,8,9-HeptaCDF	(not det) < 0.00480	ng/sample
OctaCDF	(not det.) < 0,0400	ng/sample
WHO(2005)-PCDD/F TEQ (lower-bound)	ND	ng/sample
WHO(2005)-PCDD/F TEQ (medium-bound)	0.00576 ± 0.00144	ng/sample ng/sample
WHO(2005)-PCDD/F TEQ (upper-bound)	0.0115 ± 0.00288	ng/sample ng/sample
I-TEQ (NATO/CCMS) (lower-bound)	ND	ng/sample
I-TEQ (NATO/CCMS) (medium-bound)	0.00564 ± 0.00141	ng/sample ng/sample
I-TEQ (NATO/CCMS) (upper-bound)	0.0113 ± 0.00282	ng/sample ng/sample
RR 13C12-1,2,3,7,8-PentaCDF	101	%
RR 13C12-1,2,3,7,8,9-HexaCDF	98.0	%
RR 13C12-1,2,3,4,7,8,9-HeptaCDF	96.3	%
RR 13C12-2,3,7,8-TetraCDD	92.6	%
RR 13C12-1,2,3,4-TetraCDD	100	%
RR 13C12-1,2,3,7,8-PentaCDD	95.4	%
RR 13C12-1,2,3,4,7,8-HexaCDD	100	%
RR 13C12-1,2,3,6,7,8-HexaCDD	108	%
RR 13C12-1,2,3,7,8,9-HexaCDD	100	%
RR 13C12-1,2,3,4,6,7,8-HeptaCDD	91.3	%
RR 13C12-OctaCDD	93.9	%
RR 13C12-2,3,7,8-TetraCDF	92.4	%
RR 13C12-2,3,4,7,8-PentaCDF	87.9	%
RR 13C12-1,2,3,4,7,8-HexaCDF	104	%
RR 13C12-1,2,3,6,7,8-HexaCDF	98.1	%
RR 13C12-2,3,4,6,7,8-HexaCDF	100	%

The results of examination refer exclusively to the checked samples.

Any publication of this report requires written permission. An except publication is not allowed.

Euroffine OFALds Service Ombit - Neullander Kamp 1 a D-21079 Hamburg

Headquarters: Eurofine OFALds Service GmbM — Neullander Kamp 1 a D-21079 Hamburg

HAB 115007 A6 Hamburg

General Manages: Dr. Felier Fock

Very Hot. DEZ7021272

EARLY 100: DEZ7021273

EARLY 100: DEZ7021273

EARLY 100: DEZ7021273

EARLY 100: DEZ7021074

EARLY 100: DEZ7021075

EARLY 100: DE

Our General Terms & Conditions, available upon request and online at http://www.eurofins.de/lebensmittelikontakt/avb.aspx, shall apply.

Accredited testing Laboratory by DIN EN ISO/EC DAkkS according to

kkS

DIN EN ISO/IEC 17025:2018

The accreditation is valid only for the scope listed in the annex of the

Page 3/3

Analytical report AR-23-GF-035104-01 Sample Code 710-2023-25381001

GfA Lab Service

RR 13C12-1,2,3,4,6,7,8-HeptaCDF	92.2	%
RR 13C12-OctaCDF	96.5	%

GFTE2 TEQ PCDD/F acc. to NF X 43-551 (°) (#)

Method Internal, DF:110-5/120-5/130-3/140-5, Calculation

WHO(2005)-PCDD/F TEQ (LAB REF 22) 0.0000665 ng/sample ± 0.0000166 ng/sample I-TEQ (NATO/CCMS) (LAB REF 22) 0.0000665 ng/sample ± 0.0000166 ng/sample

(°) = The test was performed at the laboratory site: Am Neulander Gewerbepark 4 (#) = Eurofins GfALab Service GmbH (Hamburg) is accredited for this test. Result +/- expanded measurement uncertainty (95%; k=2)

not. det. = the compound is not detected in the range below the LOQ (limit of quantification) det. = the compound is detected in the range below the LOQ

The recovery rates of the internal standards are within the limitations of EN 1948.

*The analysis was carried out corresponding to the sampling procedure and parameters according to DIN EN 1948-2:2006-06 (Clean-up), DIN EN 1948-3:2006-06 (PCDD/F), DIN EN 1948-4:2014-03 (PCB) and DIN CEN/TS 1948-5:2015-06 (long-term sampling). Additional information regarding the processing of the samples according to DIN EN 1948-3:2006-06 (PCDD/F) and DIN EN 1948-4:2014-03 (PCB) will be made available on request.

Analytical Service Manager (Dr. Michael Ambrosius)

The results of examination refer exclusively to the checked samples.

Any publication of this report requires written permission. An except publication is not allowed.

Euroffins OFALab Service OmbH: Neullander Kamp 1a: 0-21079 Hamburg

498: 115007 AO Hamburg

Seneral Managers: Dr. Fells Fecke

CAT No.: DE2770412372

Typovereinsbark & Bark code: 207:300.17 * Account No.: 7000002400 * SWIFT-BIC: HYVEDEMIME17

BAH: DE122073 00:17.7000.002400

Accredited testing Laboratory by DIN EN ISO/IEC DANS according to DIN EN ISO/IEC 17025:2018 The accreditation is valid only for the scope listed in the annex of the

< - Concentration below the indicated limit of quantification (LOQ) ND - not determined since none of the corresponding congeners was above the LOQ

L.Q. = below limit of quantification

Eurofins GfA Lab Service GmbH Neuländer Kamp 1a D-21079 Hamburg GERMANY

> Tel: +49 40 49294 5050 Fax: +49 40 49294 5009

> > dioxins@eurofins.de

Eurofins GfA Lab Service GmbH · Neulander Kamp 1a · D-21079 Hamburg

www.dioxine.de; www.dioxins.de

Eurofins Analyses de l'Air attn. Reports 5 rue d'Otterswiller 67700 SAVERNE FRANKREICH Person in charge Dr. M. Ambrosius ASM Dr. M. Ambrosius

Report date 04.10.2023

Page 1/3

(#)

Analytical report AR-23-GF-035127-01

Sample Code 710-2023-25381002

¹Reference Emission

| E0 C#134175+C#134200 - |
Sample sender	Reports
Reception date time	26.09.2023
Transport by	Line Haul
Client Purchase order nr.	EUFR7700011361
Purchase order date	27.09.2023
Client sample code	23R018844-018
Number of containers	4

Reception temperature room temperature End analysis 04.10.2023

Test results

GFU01	polychlorinated dibenzodioxins and -furans (17 PCDD/F): emission, imn	nission, air (°) (
Method	EN 1948*, GLS DF 140:2022-11-09, GC-HRI	MS	
2,3,7,8-TetraCDD		0.0313	ng/sample
		± 0.00938	ng/sample
1,2,3,7	,8-PentaCDD	0.00881	ng/sample
		± 0.00264	ng/sample
1,2,3,4	,7,8-HexaCDD	(det.) < 0,00600	ng/sample
1,2,3,6	,7,8-HexaCDD	(det.) < 0,00600	ng/sample
1,2,3,7	,8,9-HexaCDD	(det.) < 0,00600	ng/sample

The results of examination refer exclusively to the checked samples.

Any publication of this report requires written permission, An except publication is not allowed.

Euriffie MFALD Service Ombit - Neulinder Kamp 1 a: D-21070 Hamburg

Headquarter: Eurofine OffALDs Service Ombit — Neullinder Kamp 1 a D-21070 Hamburg

HRB 115007 A6 Hamburg

General Manages: Dr. Falk Fock

Var Ho. DEZ7018372

Over 1 and Fock

Hyperverinsbark = Brit Fock

DRH, DET 2073 00 17 7000 0024 00

DAKS
Deutster
Asses the register
Unit 1450 to 10

Accredited testing Laboratory by DIN EN ISO/IEC DAMS according to DIN EN ISO/IEC 17025:2018

DIN EN ISO/IEC 17025:2018

Alaba War Against August Against August Against August Against August Against August Against August A

Our General Terms & Conditions, available upon request and online a

^{1.} This information was provided by the customer. Data provided by the customer may have an impact on the validity of the test results.

Page 2/3

Analytical report AR-23-GF-035127-01 Sample Code 710-2023-25381002

GfA Lab Service

1,2,3,4,6,7	7,8-HeptaCDD	0.0270	ng/sample	
		± 0.00809	ng/sample	
OctaCDD		(det.) < 0,0280	ng/sample	
2,3,7,8-Te	traCDF	0.460	ng/sample	
		± 0.138	ng/sample	
1,2,3,7,8-	PentaCDF	0.140	ng/sample	
		± 0.0421	ng/sample	
2,3,4,7,8-	PentaCDF	0.0663	ng/sample	
Market Programme and Commission		± 0.0199	ng/sample	
1,2,3,4,7,8	3-HexaCDF	0.0173 ± 0.00519	ng/sample	
100676	NACDE	0.0163	ng/sample	
1,2,3,6,7,8	3-HexaCDF	± 0.00490	ng/sample ng/sample	
122790	-HexaCDF	(not det.) < 0,00500	ng/sample	
\$10000 V 70000 V 700000		Emportation of the Control of the Co		
2,3,4,6,7,8	3-HexaCDF	0.00792 ± 0.00238	ng/sample ng/sample	
122467	7,8-HeptaCDF	0.0252	ng/sample	
1,2,3,4,0,7	,о-пертасы	± 0.00756	ng/sample	
123478	3,9-HeptaCDF	(det.) < 0,00480	ng/sample	
OctaCDF	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(not det.) < 0,0400	ng/sample	
	5) BODD(5 TEO (1			
WHO(200	5)-PCDD/F TEQ (lower-bound)	0.115 ± 0.0287	ng/sample	
MHO(200	5)-PCDD/F TEQ (medium-bound)	0.116	ng/sample ng/sample	
VVHO(200	5)-FCDD/F TEQ (Mediam-bound)	± 0.0290	ng/sample	
WHO(200	5)-PCDD/F TEQ (upper-bound)	0.117	ng/sample	
VII 10(200	o) i obbii i La (appei boaila)	± 0.0293	ng/sample	
I-TEQ (NA	TO/CCMS) (lower-bound)	0.127	ng/sample	
	, (,	± 0.0316	ng/sample	
I-TEQ (NA	TO/CCMS) (medium-bound)	0.128	ng/sample	
		± 0.0319	ng/sample	
I-TEQ (NA	TO/CCMS) (upper-bound)	0.129	ng/sample	
		± 0.0322	ng/sample	
RR 13C12	2-1,2,3,7,8-PentaCDF	107	%	
RR 13C12	2-1,2,3,7,8,9-HexaCDF	110	%	
RR 13C12	2-1,2,3,4,7,8,9-HeptaCDF	107	%	
RR 13C12	2-2,3,7,8-TetraCDD	89.1	%	
	2-1,2,3,4-TetraCDD	100	%	
	2-1,2,3,7,8-PentaCDD	90.4	%	
	2-1,2,3,4,7,8-HexaCDD	96.7	%	
		90.7	70	
ults of examination refer i	exclusively to the checked samples.	Accredited test	ting Laboratory by DIN EN ISC	,

The results of examination refer exclusively to the checked samples.

Any publication of this report requires written permission. An excerpt publication is not allowed. Eurofins OffALab Service Ombit - Neuländer Kamp 1a - 0-21070 Hamburg Haedquaters: Eurofins OffALab Service Ombit - Neuländer Kamp 1a 0-21070 Hamburg HBB 110007 AG Hamburg HBB 110007 AG Hamburg Conscal Managers: 0.1 Fall Focke VAT No. 05270012372

NATION DESTROALES - Bank code: 207 300 17 * Account No.: 7000002400 * SWIFT-BIC: HYVEDEMMET/ IBAH: DELT20073 0017 7000 0024 00

Our General Terms & Conditions, available upon request and online at http://www.eurofins.de/lebensmittel/kontakt/avb.aspx, shall apply.

Accredited testing Laboratory by DIN EN ISO/IEC DAkkS according to

bedsite

As the register of the accreditation is valid only for the scope listed in the annex of the

eurofins

Page 3/3

Analytical report AR-23-GF-035127-01 Sample Code 710-2023-25381002

GfA Lab Service

RR 13C12-1,2,3,6,7,8-HexaCDD	97.9	%
RR 13C12-1,2,3,7,8,9-HexaCDD	100	%
RR 13C12-1,2,3,4,6,7,8-HeptaCDD	103	%
RR 13C12-OctaCDD	105	%
RR 13C12-2,3,7,8-TetraCDF	89.3	%
RR 13C12-2,3,4,7,8-PentaCDF	89.4	%
RR 13C12-1,2,3,4,7,8-HexaCDF	103	%
RR 13C12-1,2,3,6,7,8-HexaCDF	106	%
RR 13C12-2,3,4,6,7,8-HexaCDF	97.9	%
RR 13C12-1,2,3,4,6,7,8-HeptaCDF	100	%
RR 13C12-OctaCDF	101	%
GFTE2 TEQ PCDD/F acc. to NF X 43-551 (°) (#)		
Method Internal, DF:110-5/120-5/130-3/140-5, Calculat	tion	
WHO(2005)-PCDD/F TEQ (LAB REF 22)	0.116	ng/sample
	± 0.0290	ng/sample
I-TEQ (NATO/CCMS) (LAB REF 22)	0.128	ng/sample
	± 0.0319	ng/sample

^{(°) =} The test was performed at the laboratory site: Am Neulander Gewerbepark 4 (#) = Eurofins GfALab Service GmbH (Hamburg) is accredited for this test. Result +/- expanded measurement uncertainty (95%; k=2)

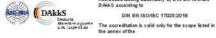
not. det. = the compound is not detected in the range below the LOQ (limit of quantification) det. = the compound is detected in the range below the LOQ

The recovery rates of the internal standards are within the limitations of EN 1948.

*The analysis was carried out corresponding to the sampling procedure and parameters according to DIN EN 1948-2:2006-06 (Clean-up), DIN EN 1948-3:2006-06 (PCDD/F), DIN EN 1948-4:2014-03 (PCB) and DIN CEN/TS 1948-5:2015-06 (long-term sampling). Additional information regarding the processing of the samples according to DIN EN 1948-3:2006-06 (PCDD/F) and DIN EN 1948-4:2014-03 (PCB) will be made available on request.

Analytical Service Manager (Dr. Michael Ambrosius)

The results of examination refer exclusively to the checked samples.


Any publication of this report requires written permission. An except publication is not allowed.

Euriffie MFALd Service GmbH - Neulinder Kamp 1a - D-21079 Mamburg

Headquarters: Eurofins OfALds Service GmbH — Neulinder Kamp 1a D-21079 Hamburg

Hea 115007 A6 Hamburg

General Managers: Dr. Falk Fock of Variation of Variatio

Accredited testing Laboratory by DIN EN ISO/IEC DAkkS according to DIN EN ISO/IEC 17025:2018

< - Concentration below the indicated limit of quantification (LOQ)

L.Q. = below limit of quantification

Ce rapport comporte: 79 pages

dont: 8 annexes

FIN DU RAPPORT: BREP230079-23-56-R1

